Package: qgg 1.1.6

Peter Soerensen

qgg: Statistical Tools for Quantitative Genetic Analyses

Provides an infrastructure for efficient processing of large-scale genetic and phenotypic data including core functions for: 1) fitting linear mixed models, 2) constructing marker-based genomic relationship matrices, 3) estimating genetic parameters (heritability and correlation), 4) performing genomic prediction and genetic risk profiling, and 5) single or multi-marker association analyses. Rohde et al. (2019) <doi:10.1101/503631>.

Authors:Peter Soerensen [aut, cre], Palle Duun Rohde [aut], Izel Fourie Soerensen [aut]

qgg_1.1.6.tar.gz
qgg_1.1.6.tar.gz(r-4.5-noble)qgg_1.1.6.tar.gz(r-4.4-noble)
qgg.pdf |qgg.html
qgg/json (API)
NEWS

# Install 'qgg' in R:
install.packages('qgg', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/psoerensen/qgg/issues

Uses libs:
  • openblas– Optimized BLAS
  • fortran– Runtime library for GNU Fortran applications
  • c++– GNU Standard C++ Library v3

fortranopenblascpp

2.96 score 46 scripts 364 downloads 2 mentions 52 exports 15 dependencies

Last updated 14 days agofrom:0f0aebc63c. Checks:OK: 2. Indexed: no.

TargetResultDate
Doc / VignettesOKDec 16 2024
R-4.5-linux-x86_64OKDec 16 2024

Exports:accadjLDadjLDStatadjStatadjustBadjustMapLDcheckStatcomputeROCcreateLDsetsgbayesgblupgetGgetGRMgetLDgetLDscoresgetLDsetsgetMapgetMarkersgetPosgetSparseLDgfilterglmagmapgprepgremlgrmgscoregseagsimgsimCgsimRgsolveldscldscoremagmamapSetsmapStatmergeGRMmtadjplotBayesplotForestplotLDplotROCpopspredict_auc_mt_ccpredict_auc_mt_continuouspredict_auc_stpredict_r2_mtpredict_r2_stsplitWithOverlapvegaswriteBED

Dependencies:codacorpcordata.tablelatticeMASSMatrixMatrixModelsmcmcMCMCpackquantregRcppRcppArmadilloSparseMstatmodsurvival