Package: probe 1.1

Alexander McLain

probe: Sparse High-Dimensional Linear Regression with PROBE

Implements an efficient and powerful Bayesian approach for sparse high-dimensional linear regression. It uses minimal prior assumptions on the parameters through plug-in empirical Bayes estimates of hyperparameters. An efficient Parameter-Expanded Expectation-Conditional-Maximization (PX-ECM) algorithm estimates maximum a posteriori (MAP) values of regression parameters and variable selection probabilities. The PX-ECM results in a robust computationally efficient coordinate-wise optimization, which adjusts for the impact of other predictor variables. The E-step is motivated by the popular two-group approach to multiple testing. The result is a PaRtitiOned empirical Bayes Ecm (PROBE) algorithm applied to sparse high-dimensional linear regression, implemented using one-at-a-time or all-at-once type optimization. More information can be found in McLain, Zgodic, and Bondell (2022) <arxiv:2209.08139>.

Authors:Alexander McLain [aut, cre], Anja Zodiac [aut, ctb]

probe_1.1.tar.gz
probe_1.1.tar.gz(r-4.5-noble)probe_1.1.tar.gz(r-4.4-noble)
probe_1.1.tgz(r-4.4-emscripten)probe_1.1.tgz(r-4.3-emscripten)
probe.pdf |probe.html
probe/json (API)

# Install 'probe' in R:
install.packages('probe', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/alexmclain/probe/issues

Uses libs:
  • openblas– Optimized BLAS
  • c++– GNU Standard C++ Library v3
  • openmp– GCC OpenMP (GOMP) support library
Datasets:
  • Sim_data - Simulated high-dimensional data set for sparse linear regression
  • Sim_data_cov - Simulated high-dimensional data set for sparse linear regression with non-sparse covariates.
  • Sim_data_test - Simulated high-dimensional test data set for sparse linear regression

openblascppopenmp

1.00 score 4 scripts 163 downloads 5 exports 11 dependencies

Last updated 1 years agofrom:daf6e41a46. Checks:OK: 2. Indexed: no.

TargetResultDate
Doc / VignettesOKNov 25 2024
R-4.5-linux-x86_64OKNov 25 2024

Exports:e_step_funcm_step_regressionpredict_probe_funcprobeprobe_one

Dependencies:codetoolsforeachglmnetiteratorslatticeMatrixRcppRcppArmadilloRcppEigenshapesurvival