Package: probe 1.1
probe: Sparse High-Dimensional Linear Regression with PROBE
Implements an efficient and powerful Bayesian approach for sparse high-dimensional linear regression. It uses minimal prior assumptions on the parameters through plug-in empirical Bayes estimates of hyperparameters. An efficient Parameter-Expanded Expectation-Conditional-Maximization (PX-ECM) algorithm estimates maximum a posteriori (MAP) values of regression parameters and variable selection probabilities. The PX-ECM results in a robust computationally efficient coordinate-wise optimization, which adjusts for the impact of other predictor variables. The E-step is motivated by the popular two-group approach to multiple testing. The result is a PaRtitiOned empirical Bayes Ecm (PROBE) algorithm applied to sparse high-dimensional linear regression, implemented using one-at-a-time or all-at-once type optimization. More information can be found in McLain, Zgodic, and Bondell (2022) <arxiv:2209.08139>.
Authors:
probe_1.1.tar.gz
probe_1.1.tar.gz(r-4.5-noble)probe_1.1.tar.gz(r-4.4-noble)
probe_1.1.tgz(r-4.4-emscripten)probe_1.1.tgz(r-4.3-emscripten)
probe.pdf |probe.html✨
probe/json (API)
# Install 'probe' in R: |
install.packages('probe', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/alexmclain/probe/issues
- Sim_data - Simulated high-dimensional data set for sparse linear regression
- Sim_data_cov - Simulated high-dimensional data set for sparse linear regression with non-sparse covariates.
- Sim_data_test - Simulated high-dimensional test data set for sparse linear regression
Last updated 1 years agofrom:daf6e41a46. Checks:OK: 2. Indexed: no.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Dec 25 2024 |
R-4.5-linux-x86_64 | OK | Dec 25 2024 |
Exports:e_step_funcm_step_regressionpredict_probe_funcprobeprobe_one
Dependencies:codetoolsforeachglmnetiteratorslatticeMatrixRcppRcppArmadilloRcppEigenshapesurvival