Package: precmed 1.1.0
Thomas Debray
precmed: Precision Medicine
A doubly robust precision medicine approach to fit, cross-validate and visualize prediction models for the conditional average treatment effect (CATE). It implements doubly robust estimation and semiparametric modeling approach of treatment-covariate interactions as proposed by Yadlowsky et al. (2020) <doi:10.1080/01621459.2020.1772080>.
Authors:
precmed_1.1.0.tar.gz
precmed_1.1.0.tar.gz(r-4.5-noble)precmed_1.1.0.tar.gz(r-4.4-noble)
precmed_1.1.0.tgz(r-4.4-emscripten)precmed_1.1.0.tgz(r-4.3-emscripten)
precmed.pdf |precmed.html✨
precmed/json (API)
NEWS
# Install 'precmed' in R: |
install.packages('precmed', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/smartdata-analysis-and-statistics/precmed/issues
- countExample - Simulated data with count outcome
- meanExample - Simulated data with a continuous outcome
- survivalExample - Simulated data with survival outcome
Last updated 1 months agofrom:b8682040df. Checks:OK: 2. Indexed: no.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 05 2024 |
R-4.5-linux | OK | Nov 05 2024 |
Exports:abcatefitatefitcountatefitsurvauccatecvcatecvcountcatecvsurvcatefitcatefitcountcatefitsurv
Dependencies:base64encbitbit64bslibcachemclicliprcodetoolscolorspacecpp11crayondata.treeDiagrammeRdigestdplyrevaluatefansifarverfastmapfontawesomeforeachfsgamgbmgenericsggplot2glmnetgluegtablehighrhmshtmltoolshtmlwidgetsigraphisobanditeratorsjquerylibjsonliteknitrlabelinglatticelifecyclemagrittrMASSMatrixmemoisemgcvmimemunsellnlmepillarpkgconfigprettyunitsprogresspurrrR6randomForestSRCrappdirsRColorBrewerRcppRcppEigenreadrrlangrmarkdownrstudioapisassscalesshapestringistringrsurvivaltibbletidyrtidyselecttinytextzdbutf8vctrsviridisLitevisNetworkvroomwithrxfunyaml