Package: pqrBayes 1.1.1

Cen Wu
pqrBayes: Bayesian Penalized Quantile Regression
Bayesian regularized quantile regression utilizing sparse priors to impose exact sparsity leads to efficient Bayesian shrinkage estimation, variable selection and statistical inference. In this package, we have implemented robust Bayesian variable selection with spike-and-slab priors under high-dimensional linear regression models (Fan et al. (2024) <doi:10.3390/e26090794> and Ren et al. (2023) <doi:10.1111/biom.13670>), and regularized quantile varying coefficient models (Zhou et al.(2023) <doi:10.1016/j.csda.2023.107808>). In particular, valid robust Bayesian inferences under both models in the presence of heavy-tailed errors can be validated on finite samples. The Markov Chain Monte Carlo (MCMC) algorithms of the proposed and alternative models are implemented in C++.
Authors:
pqrBayes_1.1.1.tar.gz
pqrBayes_1.1.1.tar.gz(r-4.5-noble)pqrBayes_1.1.1.tar.gz(r-4.4-noble)
pqrBayes_1.1.1.tgz(r-4.4-emscripten)pqrBayes_1.1.1.tgz(r-4.3-emscripten)
pqrBayes.pdf |pqrBayes.html✨
pqrBayes/json (API)
NEWS
# Install 'pqrBayes' in R: |
install.packages('pqrBayes', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/cenwu/pqrbayes/issues
- data - Simulated data under sparse linear and quantile varying coefficient models
Last updated 18 days agofrom:cbffaedf0d. Checks:2 OK. Indexed: no.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Feb 24 2025 |
R-4.5-linux-x86_64 | OK | Feb 24 2025 |
Exports:coverageestimation.pqrBayespqrBayespqrBayes.selectpredict_pqrBayes
Dependencies:codetoolsforeachglmnetiteratorslatticeMatrixRcppRcppArmadilloRcppEigenshapesurvival
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Bayesian penalized quantile regression for linear and varying coefficient models | pqrBayes-package |
95% empirical coverage probability for a pqrBayes object | coverage |
simulated data under sparse linear and quantile varying coefficient models | data |
Estimation and estimation accuracy for a pqrBayes object | estimation.pqrBayes |
fit Bayesian penalized quantile regression for linear and varying coefficient models | pqrBayes |
Variable selection for a pqrBayes object | pqrBayes.select |
Make predictions from a pqrBayes object | predict_pqrBayes |
print a pqrBayes result | print.pqrBayes |
print a pqrBayes.pred object | print.pqrBayes.pred |
print a select.pqrBayes object | print.pqrBayes.select |