Package: pqrBayes 1.0.4

Cen Wu

pqrBayes: Bayesian Penalized Quantile Regression

The quantile varying coefficient model is robust to data heterogeneity, outliers and heavy-tailed distributions in the response variable. In addition, it can flexibly model dynamic patterns of regression coefficients through nonparametric varying coefficient functions. In this package, we have implemented the Gibbs samplers of the penalized Bayesian quantile varying coefficient model with spike-and-slab priors [Zhou et al.(2023)]<doi:10.1016/j.csda.2023.107808> for efficient Bayesian shrinkage estimation, variable selection and statistical inference. In particular, valid Bayesian inferences on sparse quantile varying coefficient functions can be validated on finite samples. The Markov Chain Monte Carlo (MCMC) algorithms of the proposed and alternative models can be efficiently performed by using the package.

Authors:Kun Fan [aut], Cen Wu [aut, cre], Jie Ren [aut], Fei Zhou [aut]

pqrBayes_1.0.4.tar.gz
pqrBayes_1.0.4.tar.gz(r-4.5-noble)pqrBayes_1.0.4.tar.gz(r-4.4-noble)
pqrBayes_1.0.4.tgz(r-4.4-emscripten)pqrBayes_1.0.4.tgz(r-4.3-emscripten)
pqrBayes.pdf |pqrBayes.html
pqrBayes/json (API)

# Install 'pqrBayes' in R:
install.packages('pqrBayes', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/cenwu/pqrbayes/issues

Uses libs:
  • openblas– Optimized BLAS
  • c++– GNU Standard C++ Library v3
  • openmp– GCC OpenMP (GOMP) support library
Datasets:
  • data - Simulated data for demonstrating the features of pqrBayes

openblascppopenmp

2.00 score 284 downloads 4 exports 11 dependencies

Last updated 8 days agofrom:0e1572ca83. Checks:2 OK. Indexed: no.

TargetResultLatest binary
Doc / VignettesOKJan 25 2025
R-4.5-linux-x86_64OKJan 25 2025

Exports:coverageestimation.pqrBayespqrBayesVCselect

Dependencies:codetoolsforeachglmnetiteratorslatticeMatrixRcppRcppArmadilloRcppEigenshapesurvival