Package: pqrBayes 1.0.3

Cen Wu

pqrBayes: Bayesian Penalized Quantile Regression

The quantile varying coefficient model is robust to data heterogeneity, outliers and heavy-tailed distributions in the response variable. In addition, it can flexibly model dynamic patterns of regression coefficients through nonparametric varying coefficient functions. In this package, we have implemented the Gibbs samplers of the penalized Bayesian quantile varying coefficient model with spike-and-slab priors [Zhou et al.(2023)]<doi:10.1016/j.csda.2023.107808> for efficient Bayesian shrinkage estimation, variable selection and statistical inference. In particular, valid Bayesian inferences on sparse quantile varying coefficient functions can be validated on finite samples. The Markov Chain Monte Carlo (MCMC) algorithms of the proposed and alternative models can be efficiently performed by using the package.

Authors:Cen Wu [aut, cre], Kun Fan [aut], Jie Ren [aut], Fei Zhou [aut]

pqrBayes_1.0.3.tar.gz
pqrBayes_1.0.3.tar.gz(r-4.5-noble)pqrBayes_1.0.3.tar.gz(r-4.4-noble)
pqrBayes_1.0.3.tgz(r-4.4-emscripten)pqrBayes_1.0.3.tgz(r-4.3-emscripten)
pqrBayes.pdf |pqrBayes.html
pqrBayes/json (API)

# Install 'pqrBayes' in R:
install.packages('pqrBayes', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/cenwu/pqrbayes/issues

Uses libs:
  • openblas– Optimized BLAS
  • c++– GNU Standard C++ Library v3
  • openmp– GCC OpenMP (GOMP) support library
Datasets:
  • data - Simulated data for demonstrating the features of pqrBayes

openblascppopenmp

1.70 score 132 downloads 2 exports 11 dependencies

Last updated 10 days agofrom:6b64f6bfe4. Checks:OK: 2. Indexed: no.

TargetResultDate
Doc / VignettesOKDec 22 2024
R-4.5-linux-x86_64OKDec 22 2024

Exports:pqrBayesVCselect

Dependencies:codetoolsforeachglmnetiteratorslatticeMatrixRcppRcppArmadilloRcppEigenshapesurvival