Package: pqrBayes 1.0.3
Cen Wu
pqrBayes: Bayesian Penalized Quantile Regression
The quantile varying coefficient model is robust to data heterogeneity, outliers and heavy-tailed distributions in the response variable. In addition, it can flexibly model dynamic patterns of regression coefficients through nonparametric varying coefficient functions. In this package, we have implemented the Gibbs samplers of the penalized Bayesian quantile varying coefficient model with spike-and-slab priors [Zhou et al.(2023)]<doi:10.1016/j.csda.2023.107808> for efficient Bayesian shrinkage estimation, variable selection and statistical inference. In particular, valid Bayesian inferences on sparse quantile varying coefficient functions can be validated on finite samples. The Markov Chain Monte Carlo (MCMC) algorithms of the proposed and alternative models can be efficiently performed by using the package.
Authors:
pqrBayes_1.0.3.tar.gz
pqrBayes_1.0.3.tar.gz(r-4.5-noble)pqrBayes_1.0.3.tar.gz(r-4.4-noble)
pqrBayes_1.0.3.tgz(r-4.4-emscripten)pqrBayes_1.0.3.tgz(r-4.3-emscripten)
pqrBayes.pdf |pqrBayes.html✨
pqrBayes/json (API)
# Install 'pqrBayes' in R: |
install.packages('pqrBayes', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/cenwu/pqrbayes/issues
- data - Simulated data for demonstrating the features of pqrBayes
Last updated 10 days agofrom:6b64f6bfe4. Checks:OK: 2. Indexed: no.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Dec 22 2024 |
R-4.5-linux-x86_64 | OK | Dec 22 2024 |
Dependencies:codetoolsforeachglmnetiteratorslatticeMatrixRcppRcppArmadilloRcppEigenshapesurvival
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Regularized Bayesian Quantile Varying Coefficient Model | pqrBayes-package |
simulated data for demonstrating the features of pqrBayes | data |
fit a regularized Bayesian quantile varying coefficient model | pqrBayes |
make predictions from a pqrBayes object | predict.pqrBayes |
print a pqrBayes result | print.pqrBayes |
print a pqrBayes.pred object | print.pqrBayes.pred |
print a select.VC object | print.VCselect |
Variable selection for a pqrBayes object | VCselect |