Package: pqrBayes 1.1.1

Cen Wu

pqrBayes: Bayesian Penalized Quantile Regression

Bayesian regularized quantile regression utilizing sparse priors to impose exact sparsity leads to efficient Bayesian shrinkage estimation, variable selection and statistical inference. In this package, we have implemented robust Bayesian variable selection with spike-and-slab priors under high-dimensional linear regression models (Fan et al. (2024) <doi:10.3390/e26090794> and Ren et al. (2023) <doi:10.1111/biom.13670>), and regularized quantile varying coefficient models (Zhou et al.(2023) <doi:10.1016/j.csda.2023.107808>). In particular, valid robust Bayesian inferences under both models in the presence of heavy-tailed errors can be validated on finite samples. The Markov Chain Monte Carlo (MCMC) algorithms of the proposed and alternative models are implemented in C++.

Authors:Kun Fan [aut], Cen Wu [aut, cre], Jie Ren [aut], Fei Zhou [aut]

pqrBayes_1.1.1.tar.gz
pqrBayes_1.1.1.tar.gz(r-4.5-noble)pqrBayes_1.1.1.tar.gz(r-4.4-noble)
pqrBayes_1.1.1.tgz(r-4.4-emscripten)pqrBayes_1.1.1.tgz(r-4.3-emscripten)
pqrBayes.pdf |pqrBayes.html
pqrBayes/json (API)
NEWS

# Install 'pqrBayes' in R:
install.packages('pqrBayes', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/cenwu/pqrbayes/issues

Uses libs:
  • openblas– Optimized BLAS
  • c++– GNU Standard C++ Library v3
  • openmp– GCC OpenMP (GOMP) support library
Datasets:
  • data - Simulated data under sparse linear and quantile varying coefficient models

On CRAN:

Conda:

openblascppopenmp

2.30 score 484 downloads 5 exports 11 dependencies

Last updated 18 days agofrom:cbffaedf0d. Checks:2 OK. Indexed: no.

TargetResultLatest binary
Doc / VignettesOKFeb 24 2025
R-4.5-linux-x86_64OKFeb 24 2025

Exports:coverageestimation.pqrBayespqrBayespqrBayes.selectpredict_pqrBayes

Dependencies:codetoolsforeachglmnetiteratorslatticeMatrixRcppRcppArmadilloRcppEigenshapesurvival