Package: pqrBayes 1.0.4
Cen Wu
pqrBayes: Bayesian Penalized Quantile Regression
The quantile varying coefficient model is robust to data heterogeneity, outliers and heavy-tailed distributions in the response variable. In addition, it can flexibly model dynamic patterns of regression coefficients through nonparametric varying coefficient functions. In this package, we have implemented the Gibbs samplers of the penalized Bayesian quantile varying coefficient model with spike-and-slab priors [Zhou et al.(2023)]<doi:10.1016/j.csda.2023.107808> for efficient Bayesian shrinkage estimation, variable selection and statistical inference. In particular, valid Bayesian inferences on sparse quantile varying coefficient functions can be validated on finite samples. The Markov Chain Monte Carlo (MCMC) algorithms of the proposed and alternative models can be efficiently performed by using the package.
Authors:
pqrBayes_1.0.4.tar.gz
pqrBayes_1.0.4.tar.gz(r-4.5-noble)pqrBayes_1.0.4.tar.gz(r-4.4-noble)
pqrBayes_1.0.4.tgz(r-4.4-emscripten)pqrBayes_1.0.4.tgz(r-4.3-emscripten)
pqrBayes.pdf |pqrBayes.html✨
pqrBayes/json (API)
# Install 'pqrBayes' in R: |
install.packages('pqrBayes', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/cenwu/pqrbayes/issues
- data - Simulated data for demonstrating the features of pqrBayes
Last updated 8 days agofrom:0e1572ca83. Checks:2 OK. Indexed: no.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Jan 25 2025 |
R-4.5-linux-x86_64 | OK | Jan 25 2025 |
Exports:coverageestimation.pqrBayespqrBayesVCselect
Dependencies:codetoolsforeachglmnetiteratorslatticeMatrixRcppRcppArmadilloRcppEigenshapesurvival
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Regularized Bayesian Quantile Varying Coefficient Model | pqrBayes-package |
Empirical 95% coverage probability for a pqrBayes object | coverage |
simulated data for demonstrating the features of pqrBayes | data |
Estimation and estimation accuracy for a pqrBayes object | estimation.pqrBayes |
fit a regularized Bayesian quantile varying coefficient model | pqrBayes |
make predictions from a pqrBayes object | predict.pqrBayes |
print a pqrBayes result | print.pqrBayes |
print a pqrBayes.pred object | print.pqrBayes.pred |
print a select.VC object | print.VCselect |
Variable selection for a pqrBayes object | VCselect |