Package: poismf 0.4.0-4

David Cortes

poismf: Factorization of Sparse Counts Matrices Through Poisson Likelihood

Creates a non-negative low-rank approximate factorization of a sparse counts matrix by maximizing Poisson likelihood with L1/L2 regularization (e.g. for implicit-feedback recommender systems or bag-of-words-based topic modeling) (Cortes, (2018) <arxiv:1811.01908>), which usually leads to very sparse user and item factors (over 90% zero-valued). Similar to hierarchical Poisson factorization (HPF), but follows an optimization-based approach with regularization instead of a hierarchical prior, and is fit through gradient-based methods instead of variational inference.

Authors:David Cortes [aut, cre, cph], Jean-Sebastien Roy [cph], Stephen Nash [cph]

poismf_0.4.0-4.tar.gz
poismf_0.4.0-4.tar.gz(r-4.5-noble)poismf_0.4.0-4.tar.gz(r-4.4-noble)
poismf_0.4.0-4.tgz(r-4.4-emscripten)poismf_0.4.0-4.tgz(r-4.3-emscripten)
poismf.pdf |poismf.html
poismf/json (API)

# Install 'poismf' in R:
install.packages('poismf', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/david-cortes/poismf/issues

Uses libs:
  • openblas– Optimized BLAS
  • openmp– GCC OpenMP (GOMP) support library

openblasopenmp

1.00 score 9 scripts 339 downloads 11 exports 2 dependencies

Last updated 2 years agofrom:451fcff9b1. Checks:OK: 2. Indexed: no.

TargetResultDate
Doc / VignettesOKDec 22 2024
R-4.5-linux-x86_64OKDec 22 2024

Exports:factorsfactors.singleget.factor.matricesget.model.mappingspoismfpoismf_unsafepredict.poismfprint.poismfsummary.poismftopNtopN.new

Dependencies:latticeMatrix