Package: plmmr 4.1.0

Patrick J. Breheny

plmmr: Penalized Linear Mixed Models for Correlated Data

Fits penalized linear mixed models that correct for unobserved confounding factors. 'plmmr' infers and corrects for the presence of unobserved confounding effects such as population stratification and environmental heterogeneity. It then fits a linear model via penalized maximum likelihood. Originally designed for the multivariate analysis of single nucleotide polymorphisms (SNPs) measured in a genome-wide association study (GWAS), 'plmmr' eliminates the need for subpopulation-specific analyses and post-analysis p-value adjustments. Functions for the appropriate processing of 'PLINK' files are also supplied. For examples, see the package homepage. <https://pbreheny.github.io/plmmr/>.

Authors:Tabitha K. Peter [aut], Anna C. Reisetter [aut], Patrick J. Breheny [aut, cre], Yujing Lu [aut]

plmmr_4.1.0.tar.gz
plmmr_4.1.0.tar.gz(r-4.5-noble)plmmr_4.1.0.tar.gz(r-4.4-noble)
plmmr_4.1.0.tgz(r-4.4-emscripten)
plmmr.pdf |plmmr.html
plmmr/json (API)
NEWS

# Install 'plmmr' in R:
install.packages('plmmr', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/pbreheny/plmmr/issues

Uses libs:
  • c++– GNU Standard C++ Library v3
  • openmp– GCC OpenMP (GOMP) support library
Datasets:
  • admix - Admix: Semi-simulated SNP data

3.00 score 10 scripts 294 downloads 9 exports 19 dependencies

Last updated 1 months agofrom:c19d1ca303. Checks:OK: 2. Indexed: no.

TargetResultDate
Doc / VignettesOKNov 23 2024
R-4.5-linux-x86_64OKNov 23 2024

Exports:create_designcv_plmmfind_example_dataplmmplmm_lossprocess_delimprocess_plinkrelatedness_matunzip_example_data

Dependencies:BHbigalgebrabiglassobigmemorybigmemory.sricodetoolsdata.tableforeachglmnetiteratorslatticeMatrixncvregRcppRcppArmadilloRcppEigenshapesurvivaluuid

Getting started with plmmr

Rendered fromgetting-started.Rmdusingknitr::rmarkdownon Nov 23 2024.

Last update: 2024-10-23
Started: 2024-10-11