Package: penPHcure 1.0.2
Alessandro Beretta
penPHcure: Variable Selection in PH Cure Model with Time-Varying Covariates
Implementation of the semi-parametric proportional-hazards (PH) of Sy and Taylor (2000) <doi:10.1111/j.0006-341X.2000.00227.x> extended to time-varying covariates. Estimation and variable selection are based on the methodology described in Beretta and Heuchenne (2019) <doi:10.1080/02664763.2018.1554627>; confidence intervals of the parameter estimates may be computed using a bootstrap approach. Moreover, data following the PH cure model may be simulated using a method similar to Hendry (2014) <doi:10.1002/sim.5945>, where the event-times are generated on a continuous scale from a piecewise exponential distribution conditional on time-varying covariates.
Authors:
penPHcure_1.0.2.tar.gz
penPHcure_1.0.2.tar.gz(r-4.5-noble)penPHcure_1.0.2.tar.gz(r-4.4-noble)
penPHcure_1.0.2.tgz(r-4.4-emscripten)penPHcure_1.0.2.tgz(r-4.3-emscripten)
penPHcure.pdf |penPHcure.html✨
penPHcure/json (API)
NEWS
# Install 'penPHcure' in R: |
install.packages('penPHcure', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/a-beretta/penphcure/issues
- cpRossi - Criminal Recidivism Data
Last updated 5 years agofrom:c0b323c358. Checks:OK: 1 NOTE: 1. Indexed: no.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 09 2024 |
R-4.5-linux-x86_64 | NOTE | Nov 09 2024 |
Exports:penPHcurepenPHcure.simulate
Dependencies:latticeMASSMatrixrbibutilsRcppRcppArmadilloRdpacksurvival
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Variable Selection in Proportional-Hazards Cure Model with Time-Varying Covariates | penPHcure-package |
Criminal Recidivism Data | cpRossi |
Variable selection in PH cure model with time-varying covariates | penPHcure |
Penalized PH cure model object | penPHcure.object |
Simulation of a PH cure model with time-varying covariates | penPHcure.simulate |
Standard PH cure model object | PHcure.object |
Predict method for penPHcure.object | predict.penPHcure |
Predict method for PHcure.object | predict.PHcure |
Summary method for penPHcure.object | summary.penPHcure |
Summary method for PHcure.object | summary.PHcure |