Package: pdSpecEst 1.2.4

Joris Chau

pdSpecEst: An Analysis Toolbox for Hermitian Positive Definite Matrices

An implementation of data analysis tools for samples of symmetric or Hermitian positive definite matrices, such as collections of covariance matrices or spectral density matrices. The tools in this package can be used to perform: (i) intrinsic wavelet transforms for curves (1D) or surfaces (2D) of Hermitian positive definite matrices with applications to dimension reduction, denoising and clustering in the space of Hermitian positive definite matrices; and (ii) exploratory data analysis and inference for samples of positive definite matrices by means of intrinsic data depth functions and rank-based hypothesis tests in the space of Hermitian positive definite matrices.

Authors:Joris Chau [aut, cre]

pdSpecEst_1.2.4.tar.gz
pdSpecEst_1.2.4.tar.gz(r-4.5-noble)pdSpecEst_1.2.4.tar.gz(r-4.4-noble)
pdSpecEst_1.2.4.tgz(r-4.4-emscripten)pdSpecEst_1.2.4.tgz(r-4.3-emscripten)
pdSpecEst.pdf |pdSpecEst.html
pdSpecEst/json (API)
NEWS

# Install 'pdSpecEst' in R:
install.packages('pdSpecEst', repos = 'https://cloud.r-project.org')

Bug tracker:https://github.com/jorischau/pdspecest/issues0 issues

Uses libs:
  • openblas– Optimized BLAS
  • c++– GNU Standard C++ Library v3

On CRAN:

Conda:

openblascpp

3.48 score 3 stars 202 downloads 28 exports 18 dependencies

Last updated 5 years agofrom:e8bc2a87ae. Checks:1 OK, 2 NOTE. Indexed: no.

TargetResultLatest binary
Doc / VignettesOKMar 19 2025
R-4.5-linux-x86_64NOTEMar 19 2025
R-4.4-linux-x86_64NOTEMar 19 2025

Exports:ExpmH.coeffInvWavTransf1DInvWavTransf2DLogmMidpdCARTpdDepthpdDistpdkMeanspdMeanpdMedianpdNevillepdParTranspdPgrampdPgram2DpdPolynomialpdRankTestspdSpecClust1DpdSpecClust2DpdSpecEst1DpdSpecEst2DpdSplineRegrARMArExamples1DrExamples2DWavTransf1DWavTransf2D

Dependencies:abindBHclassddalphaDEoptimRgeometrylinproglpSolvemagicMASSmultitaperrbibutilsRcppRcppArmadilloRcppProgressRdpackrobustbasesfsmisc

Data depth and rank-based tests for HPD matrices

Rendered fromdepth_ranktests.Rmdusingknitr::rmarkdownon Mar 19 2025.

Last update: 2020-01-08
Started: 2017-07-02

Wavelet-based multivariate Fourier spectral estimation

Rendered fromwavelet_est_clust.Rmdusingknitr::rmarkdownon Mar 19 2025.

Last update: 2020-01-08
Started: 2017-07-02

Citation

To cite package ‘pdSpecEst’ in publications use:

Chau J (2020). pdSpecEst: An Analysis Toolbox for Hermitian Positive Definite Matrices. R package version 1.2.4, https://CRAN.R-project.org/package=pdSpecEst.

Corresponding BibTeX entry:

  @Manual{,
    title = {pdSpecEst: An Analysis Toolbox for Hermitian Positive
      Definite Matrices},
    author = {Joris Chau},
    year = {2020},
    note = {R package version 1.2.4},
    url = {https://CRAN.R-project.org/package=pdSpecEst},
  }

Readme and manuals

The pdSpecEst packagepdSpecEst

The pdSpecEst (positive definite Spectral Estimation) package provides data analysis tools for samples of symmetric or Hermitian positive definite matrices, such as collections of positive definite covariance matrices or spectral density matrices.

The tools in this package can be used to perform:

  • Intrinsic wavelet transforms for curves (1D) or surfaces (2D) of Hermitian positive definite matrices, with applications to for instance: dimension reduction, denoising and clustering for curves or surfaces of Hermitian positive definite matrices such as (time-varying) Fourier spectral density matrices. These implementations are based in part on the papers (Chau and Sachs 2019) and (Chau and Sachs 2018) and Chapters 3 and 5 of (Chau 2018).

  • Exploratory data analysis and inference for samples of Hermitian positive definite matrices by means of intrinsic data depth functions and depth rank-based hypothesis tests. These implementations are based on the paper (Chau, Ombao, and Sachs 2019) and Chapter 4 of (Chau 2018).

For more details and examples on how to use the package see the accompanying vignettes in the vignettes folder.

Author and maintainer: Joris Chau (joris.chau@openanalytics.eu).

Installation

  • Stable CRAN version: install from within R

References

Chau, J. 2018. “Advances in Spectral Analysis for Multivariate, Nonstationary and Replicated Time Series.” PhD thesis, Universite catholique de Louvain.

Chau, J., H. Ombao, and R. von Sachs. 2019. “Intrinsic Data Depth for Hermitian Positive Definite Matrices.” Journal of Computational and Graphical Statistics 28 (2): 427–39. https://doi.org/https://doi.org/10.1080/10618600.2018.1537926.

Chau, J., and R. von Sachs. 2018. “Intrinsic Wavelet Regression for Surfaces of Hermitian Positive Definite Matrices.” ArXiv Preprint 1808.08764. https://arxiv.org/abs/1808.08764.

———. 2019. “Intrinsic Wavelet Regression for Curves of Hermitian Positive Definite Matrices.” Journal of the American Statistical Association. https://doi.org/https://doi.org/10.1080/01621459.2019.1700129.

Help Manual

Help pageTopics
Riemannian HPD exponential mapExpm
Orthonormal basis expansion of a Hermitian matrixH.coeff
Inverse AI wavelet transform for curve of HPD matricesInvWavTransf1D
Inverse AI wavelet transform for surface of HPD matricesInvWavTransf2D
Riemannian HPD logarithmic mapLogm
Geodesic midpoint between HPD matricesMid
Tree-structured trace thresholding of wavelet coefficientspdCART
Data depth for HPD matricespdDepth
Compute distance between two HPD matricespdDist
K-means clustering for HPD matricespdkMeans
Weighted Karcher mean of HPD matricespdMean
Weighted intrinsic median of HPD matricespdMedian
Polynomial interpolation of curves (1D) or surfaces (2D) of HPD matricespdNeville
Riemannian HPD parallel transportpdParTrans
Multitaper HPD periodogram matrixpdPgram
Multitaper HPD time-varying periodogram matrixpdPgram2D
Generate intrinsic HPD polynomial curvespdPolynomial
Rank-based hypothesis tests for HPD matricespdRankTests
Intrinsic wavelet HPD spectral matrix clusteringpdSpecClust1D
Intrinsic wavelet HPD time-varying spectral clusteringpdSpecClust2D
pdSpecEst: An Analysis Toolbox for Hermitian Positive Definite MatricespdSpecEst-package pdSpecEst
Intrinsic wavelet HPD spectral estimationpdSpecEst1D
Intrinsic wavelet HPD time-varying spectral estimationpdSpecEst2D
Cubic smoothing spline regression for HPD matricespdSplineReg
Simulate vARMA(2,2) time seriesrARMA
Several example curves of HPD matricesrExamples1D
Several example surfaces of HPD matricesrExamples2D
Forward AI wavelet transform for curve of HPD matricesWavTransf1D
Forward AI wavelet transform for surface of HPD matricesWavTransf2D