Package: outqrf 1.0.0
Tengfei Xu
outqrf: Find the Outlier by Quantile Random Forests
Provides a method to find the outlier in custom data by quantile random forests method. Introduced by Meinshausen Nicolai (2006) <https://dl.acm.org/doi/10.5555/1248547.1248582>. It directly calls the ranger() function of the 'ranger' package to perform data fitting and prediction. We also implement the evaluation of outlier prediction results. Compared with random forest detection of outliers, this method has higher accuracy and stability on large datasets.
Authors:
outqrf_1.0.0.tar.gz
outqrf_1.0.0.tar.gz(r-4.5-noble)outqrf_1.0.0.tar.gz(r-4.4-noble)
outqrf_1.0.0.tgz(r-4.4-emscripten)outqrf_1.0.0.tgz(r-4.3-emscripten)
outqrf.pdf |outqrf.html✨
outqrf/json (API)
# Install 'outqrf' in R: |
install.packages('outqrf', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/flystar233/outqrf/issues
Last updated 4 months agofrom:77c6c6efee. Checks:2 OK. Indexed: no.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Jan 09 2025 |
R-4.5-linux | OK | Jan 09 2025 |
Exports:evaluateOutliersfind_indexgenerateOutliersget_quantily_valueoutqrf
Dependencies:abindbackportsbootbroomcarcarDataclicolorspacecorrplotcowplotcpp11DerivdoBydplyrfansifarverFNNFormulagenericsggplot2ggpubrggrepelggsciggsignifgluegridExtragtableisobandlabelinglatticelifecyclelme4magrittrMASSMatrixMatrixModelsmgcvmicrobenchmarkminqamissRangermodelrmunsellnlmenloptrnnetnumDerivpbkrtestpillarpkgconfigpolynompurrrquantregR6rangerRColorBrewerRcppRcppEigenrlangrstatixscalesSparseMstringistringrsurvivaltibbletidyrtidyselectutf8vctrsviridisLitewithr
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Evaluate Outliers | evaluateOutliers |
find the closest index | find_index |
Adds Outliers | generateOutliers |
get numberic value from string | get_quantily_value |
find the right rank | get_right_rank |
find outliers | outqrf |
Plots outqrf | plot.outqrf |