Package: outliertree 1.10.0

David Cortes

outliertree: Explainable Outlier Detection Through Decision Tree Conditioning

Outlier detection method that flags suspicious values within observations, constrasting them against the normal values in a user-readable format, potentially describing conditions within the data that make a given outlier more rare. Full procedure is described in Cortes (2020) <doi:10.48550/arXiv.2001.00636>. Loosely based on the 'GritBot' <https://www.rulequest.com/gritbot-info.html> software.

Authors:David Cortes [aut, cre]

outliertree_1.10.0.tar.gz
outliertree_1.10.0.tar.gz(r-4.5-noble)outliertree_1.10.0.tar.gz(r-4.4-noble)
outliertree_1.10.0.tgz(r-4.4-emscripten)outliertree_1.10.0.tgz(r-4.3-emscripten)
outliertree.pdf |outliertree.html
outliertree/json (API)

# Install 'outliertree' in R:
install.packages('outliertree', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/david-cortes/outliertree/issues

Uses libs:
  • c++– GNU Standard C++ Library v3
  • openmp– GCC OpenMP (GOMP) support library
Datasets:
  • hypothyroid - Data about thyroid hormones for anonymous patients
  • titanic - Data about passengers of the RMS Titanic

3.88 score 2 packages 21 scripts 557 downloads 3 exports 2 dependencies

Last updated 3 months agofrom:26d0843445. Checks:OK: 1 NOTE: 1. Indexed: no.

TargetResultDate
Doc / VignettesOKNov 07 2024
R-4.5-linux-x86_64NOTENov 07 2024

Exports:check.outlierness.boundsextract.training.outliersoutlier.tree

Dependencies:RcerealRcpp

Explainable Outlier Detection in Titanic dataset

Rendered fromExplainable_Outlier_Detection_in_Titanic_dataset.Rmdusingknitr::rmarkdownon Nov 07 2024.

Last update: 2022-08-06
Started: 2022-02-17

Introducing OutlierTree

Rendered fromIntroducing_OutlierTree.Rmdusingknitr::rmarkdownon Nov 07 2024.

Last update: 2021-05-17
Started: 2021-05-17