Package: optRF 1.1.0

Thomas Martin Lange

optRF: Optimising Random Forest Stability by Determining the Optimal Number of Trees

Calculating the stability of random forest with certain numbers of trees. The non-linear relationship between stability and numbers of trees is described using a logistic regression model and used to estimate the optimal number of trees.

Authors:Thomas Martin Lange [cre, aut], Felix Heinrich [ctb]

optRF_1.1.0.tar.gz
optRF_1.1.0.tar.gz(r-4.5-noble)optRF_1.1.0.tar.gz(r-4.4-noble)
optRF_1.1.0.tgz(r-4.4-emscripten)optRF_1.1.0.tgz(r-4.3-emscripten)
optRF.pdf |optRF.html
optRF/json (API)
NEWS

# Install 'optRF' in R:
install.packages('optRF', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/tmlange/optrf/issues

Datasets:
  • SNPdata - Simulated data of wheat yield and genomic markers

3.48 score 136 downloads 5 exports 8 dependencies

Last updated 3 days agofrom:f434876e38. Checks:2 OK. Indexed: no.

TargetResultLatest binary
Doc / VignettesOKFeb 03 2025
R-4.5-linuxOKFeb 03 2025

Exports:estimate_numtreesestimate_stabilityopt_importanceopt_predictionplot_stability

Dependencies:irrlatticelpSolveMatrixminpack.lmrangerRcppRcppEigen

Optimising random forest for prediction based decision-making processes

Rendered fromopt_prediction.Rmdusingknitr::rmarkdownon Feb 03 2025.

Last update: 2025-02-03
Started: 2025-02-03

Optimising random forest for variable selection

Rendered fromopt_importance.Rmdusingknitr::rmarkdownon Feb 03 2025.

Last update: 2025-02-03
Started: 2025-02-03

Optimising random forest using optRF

Rendered fromoptRF.Rmdusingknitr::rmarkdownon Feb 03 2025.

Last update: 2025-02-03
Started: 2025-02-03