Package: nhppp 1.0.0
nhppp: Simulating Nonhomogeneous Poisson Point Processes
Simulates events from one dimensional nonhomogeneous Poisson point processes (NHPPPs) as per Trikalinos and Sereda (2024, <doi:10.48550/arXiv.2402.00358>). Functions are based on three algorithms that provably sample from a target NHPPP: the time-transformation of a homogeneous Poisson process (of intensity one) via the inverse of the integrated intensity function (Cinlar E, "Theory of stochastic processes" (1975, ISBN:0486497996)); the generation of a Poisson number of order statistics from a fixed density function; and the thinning of a majorizing NHPPP via an acceptance-rejection scheme (Lewis PAW, Shedler, GS (1979) <doi:10.1002/nav.3800260304>).
Authors:
nhppp_1.0.0.tar.gz
nhppp_1.0.0.tar.gz(r-4.5-noble)nhppp_1.0.0.tar.gz(r-4.4-noble)
nhppp_1.0.0.tgz(r-4.4-emscripten)nhppp_1.0.0.tgz(r-4.3-emscripten)
nhppp.pdf |nhppp.html✨
nhppp/json (API)
NEWS
# Install 'nhppp' in R: |
install.packages('nhppp', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/bladder-ca/nhppp/issues
Last updated 7 days agofrom:b779277213. Checks:OK: 2. Indexed: no.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Oct 24 2024 |
R-4.5-linux-x86_64 | OK | Oct 24 2024 |
Exports:drawdraw_cumulative_intensitydraw_intensitydraw_sc_lineardraw_sc_loglineardraw_sc_stepdraw_sc_step_regularget_step_majorizerinverse_with_unirootinverse_with_uniroot_sortedpppppp_exactly_nppp_nppp_next_nppp_orderstatppp_sequentialrng_stream_rexprng_stream_rpoisrng_stream_runifrng_stream_rztpoisrztpoissimpson_num_integrvdrawvdraw_cumulative_intensityvdraw_intensityvdraw_sc_step_regularvdraw_sc_step_regular_cppztdraw_cumulative_intensityztdraw_sc_linearztdraw_sc_loglinearztppp
A simple discrete event simulation model of a cancer's natural history
Rendered fromSimple_des_model_cancer_natural_Hx.Rmd
usingknitr::rmarkdown
on Oct 24 2024.Last update: 2024-10-23
Started: 2024-10-23
Sampling log-linear times
Rendered fromLog_linear_times.Rmd
usingknitr::rmarkdown
on Oct 24 2024.Last update: 2024-10-23
Started: 2024-10-23