Package: mult.latent.reg 0.2.1
mult.latent.reg: Regression and Clustering in Multivariate Response Scenarios
Fitting multivariate response models with random effects on one or two levels; whereby the (one-dimensional) random effect represents a latent variable approximating the multivariate space of outcomes, after possible adjustment for covariates. The method is particularly useful for multivariate, highly correlated outcome variables with unobserved heterogeneities. Applications include regression with multivariate responses, as well as multivariate clustering or ranking problems. See Zhang and Einbeck (2024) <doi:10.1007/s42519-023-00357-0>.
Authors:
mult.latent.reg_0.2.1.tar.gz
mult.latent.reg_0.2.1.tar.gz(r-4.5-noble)mult.latent.reg_0.2.1.tar.gz(r-4.4-noble)
mult.latent.reg_0.2.1.tgz(r-4.4-emscripten)mult.latent.reg_0.2.1.tgz(r-4.3-emscripten)
mult.latent.reg.pdf |mult.latent.reg.html✨
mult.latent.reg/json (API)
# Install 'mult.latent.reg' in R: |
install.packages('mult.latent.reg', repos = 'https://cloud.r-project.org') |
- IALS_data - International Adult Literacy Survey (IALS) for 13 countries
- fetal_covid_data - A set of fetal movements data collected before and during the Covid-19 pandemic
- trading_data - A set of import and export data in 44 countries.
- twins_data - A set of fetal movements data in twins.
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 5 months agofrom:5268f1719e. Checks:2 OK, 1 NOTE. Indexed: no.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Mar 25 2025 |
R-4.5-linux | OK | Mar 25 2025 |
R-4.4-linux | NOTE | Mar 25 2025 |
Exports:mult.em_1levelmult.em_2levelmult.reg_1levelmult.reg_2levelstart_em
Dependencies:bootlatticelme4MASSMatrixmatrixStatsminqamvtnormnlmenloptrrbibutilsRcppRcppEigenRdpackreformulas
Citation
To cite package ‘mult.latent.reg’ in publications use:
Yingjuan Zhang, Jochen Einbeck (2024). mult.latent.reg: Regression and Clustering in Multivariate Response Scenarios. R package version 0.2.1, https://CRAN.R-project.org/package=mult.latent.reg.
Corresponding BibTeX entry:
@Manual{, title = {mult.latent.reg: Regression and Clustering in Multivariate Response Scenarios}, author = {{Yingjuan Zhang} and {Jochen Einbeck}}, year = {2024}, note = {R package version 0.2.1}, url = {https://CRAN.R-project.org/package=mult.latent.reg}, }
Readme and manuals
Help Manual
Help page | Topics |
---|---|
A set of fetal movements data collected before and during the Covid-19 pandemic | fetal_covid_data |
International Adult Literacy Survey (IALS) for 13 countries | IALS_data |
EM algorithm for multivariate one level model with covariates | mult.em_1level |
EM algorithm for multivariate two level model with covariates | mult.em_2level |
Regression and Clustering in Multivariate Response Scenarios | mult.latent.reg package |
Selecting the best results for multivariate one level model | mult.reg_1level |
Selecting the best results for multivariate two level model | mult.reg_2level |
Starting values for parameters | start_em |
A set of import and export data in 44 countries. | trading_data |
A set of fetal movements data in twins. | twins_data |