Package: mult.latent.reg 0.2.0

Yingjuan Zhang

mult.latent.reg: Regression and Clustering in Multivariate Response Scenarios

Fitting multivariate response models with random effects on one or two levels; whereby the (one-dimensional) random effect represents a latent variable approximating the multivariate space of outcomes, after possible adjustment for covariates. The method is particularly useful for multivariate, highly correlated outcome variables with unobserved heterogeneities. Applications include regression with multivariate responses, as well as multivariate clustering or ranking problems. See Zhang and Einbeck (2024) <doi:10.1007/s42519-023-00357-0>.

Authors:Yingjuan Zhang [aut, cre], Jochen Einbeck [aut, ctb]

mult.latent.reg_0.2.0.tar.gz
mult.latent.reg_0.2.0.tar.gz(r-4.5-noble)mult.latent.reg_0.2.0.tar.gz(r-4.4-noble)
mult.latent.reg_0.2.0.tgz(r-4.4-emscripten)mult.latent.reg_0.2.0.tgz(r-4.3-emscripten)
mult.latent.reg.pdf |mult.latent.reg.html
mult.latent.reg/json (API)

# Install 'mult.latent.reg' in R:
install.packages('mult.latent.reg', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Datasets:
  • IALS_data - International Adult Literacy Survey (IALS) for 13 countries
  • fetal_covid_data - A set of fetal movements data collected before and during the Covid-19 pandemic
  • trading_data - A set of import and export data in 44 countries.
  • twins_data - A set of fetal movements data in twins.

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.60 score 192 downloads 5 exports 12 dependencies

Last updated 5 days agofrom:1b88a58dbc. Checks:OK: 2. Indexed: no.

TargetResultDate
Doc / VignettesOKOct 25 2024
R-4.5-linuxOKOct 25 2024

Exports:mult.em_1levelmult.em_2levelmult.reg_1levelmult.reg_2levelstart_em

Dependencies:bootlatticelme4MASSMatrixmatrixStatsminqamvtnormnlmenloptrRcppRcppEigen