Package: mpath 0.4-2.26

Zhu Wang

mpath: Regularized Linear Models

Algorithms compute robust estimators for loss functions in the concave convex (CC) family by the iteratively reweighted convex optimization (IRCO), an extension of the iteratively reweighted least squares (IRLS). The IRCO reduces the weight of the observation that leads to a large loss; it also provides weights to help identify outliers. Applications include robust (penalized) generalized linear models and robust support vector machines. The package also contains penalized Poisson, negative binomial, zero-inflated Poisson, zero-inflated negative binomial regression models and robust models with non-convex loss functions. Wang et al. (2014) <doi:10.1002/sim.6314>, Wang et al. (2015) <doi:10.1002/bimj.201400143>, Wang et al. (2016) <doi:10.1177/0962280214530608>, Wang (2021) <doi:10.1007/s11749-021-00770-2>, Wang (2024) <doi:10.1111/anzs.12409>.

Authors:Zhu Wang, with contributions from Achim Zeileis, Simon Jackman, Brian Ripley, and Patrick Breheny

mpath_0.4-2.26.tar.gz
mpath_0.4-2.26.tar.gz(r-4.5-noble)mpath_0.4-2.26.tar.gz(r-4.4-noble)
mpath_0.4-2.26.tgz(r-4.4-emscripten)mpath_0.4-2.26.tgz(r-4.3-emscripten)
mpath.pdf |mpath.html
mpath/json (API)
NEWS

# Install 'mpath' in R:
install.packages('mpath', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/zhuwang46/mpath/issues

Uses libs:
  • openblas– Optimized BLAS
  • fortran– Runtime library for GNU Fortran applications
Datasets:

fortranopenblas

5.86 score 1 stars 4 packages 127 scripts 918 downloads 4 mentions 50 exports 18 dependencies

Last updated 5 months agofrom:6ef263b886. Checks:OK: 2. Indexed: no.

TargetResultDate
Doc / VignettesOKNov 25 2024
R-4.5-linux-x86_64OKNov 25 2024

Exports:be.zeroinflbreadRegcfun2numcheck_scompute_gcompute_wtconv2glmregconv2zipathcv.foldscv.glmregcv.glmreg_fitcv.glmregNBcv.irglmregcv.irglmreg_fitcv.irsvmcv.irsvm_fitcv.nclregcv.nclreg_fitcv.zipathestfunReggfuncglmregglmregNBhessianRegirglmirglmregirglmreg_fitirsvmirsvm_fitllfunloss2loss2_irsvmloss3meatRegnclncl_fitnclregnclreg_fitpredictzeroinfl1pval.zipathrzisandwichRegsestantuning.zipathupdate_wty2numy2num4glmzipathzipath_fit

Dependencies:bstcodetoolsdoParallelforeachgbmglmnetiteratorslatticeMASSMatrixnumDerivpsclRcppRcppEigenrpartshapesurvivalWeightSVM

Classification of Cancer Patients with Penalized Robust Nonconvex Loss Functions (with Results)

Rendered fromstatic_brcancer.pdf.asisusingR.rsp::asison Nov 25 2024.

Last update: 2017-10-23
Started: 2017-10-23

Classification of Cancer Patients with Penalized Robust Nonconvex Loss Functions (without Results)

Rendered frombrcancer.Rnwusingknitr::knitron Nov 25 2024.

Last update: 2024-03-10
Started: 2018-07-21

KKT Conditions for Zero-Inflated Regression

Rendered fromkkt.Rnwusingutils::Sweaveon Nov 25 2024.

Last update: 2023-01-06
Started: 2019-04-15

Robust Generalized Linear Models

Rendered fromstatic_irglmExample.pdf.asisusingR.rsp::asison Nov 25 2024.

Last update: 2022-02-21
Started: 2022-02-21

Robust Support Vector Machines

Rendered fromstatic_irsvmExample.pdf.asisusingR.rsp::asison Nov 25 2024.

Last update: 2022-02-21
Started: 2022-02-21

Variable Selection for Zero-inflated and Overdispersed Data with Application to Health Care Demand in Germany

Rendered fromstatic_german.pdf.asisusingR.rsp::asison Nov 25 2024.

Last update: 2020-11-10
Started: 2015-06-10

Readme and manuals

Help Manual

Help pageTopics
conduct backward stepwise variable elimination for zero inflated count regressionbe.zeroinfl
Bread for Sandwiches in Regularized EstimatorsbreadReg breadReg.zipath
Breast feeding decisionbreastfeed
Compute concave function valuescompute_g
Weight value from concave functioncompute_wt
convert glm object to class glmregconv2glmreg
convert zeroinfl object to class zipathconv2zipath
Cross-validation for glmregcoef.cv.glmreg cv.glmreg cv.glmreg.default cv.glmreg.formula cv.glmreg.matrix plot.cv.glmreg predict.cv.glmreg
Internal function of cross-validation for glmregcv.glmreg_fit
Cross-validation for glmregNBcv.glmregNB
Cross-validation for irglmregcoef.cv.irglmreg cv.irglmreg cv.irglmreg.default cv.irglmreg.formula cv.irglmreg.matrix plot.cv.irglmreg
Internal function of cross-validation for irglmregcv.irglmreg_fit
Cross-validation for irsvmcv.irsvm cv.irsvm.default cv.irsvm.formula cv.irsvm.matrix
Internal function of cross-validation for irsvmcv.irsvm_fit
Cross-validation for nclregcoef.cv.nclreg cv.nclreg cv.nclreg.default cv.nclreg.formula cv.nclreg.matrix plot.cv.nclreg
Internal function of cross-validation for nclregcv.nclreg_fit
Cross-validation for zipathcoef.cv.zipath cv.zipath cv.zipath.default cv.zipath.formula cv.zipath.matrix predict.cv.zipath
Cross-validation for zipathcv.zipath_fit
Doctor visitsdocvisits
Extract Empirical First Derivative of Log-likelihood FunctionestfunReg estfunReg.zipath
Convert response value to raw prediction in GLMgfunc
fit a GLM with lasso (or elastic net), snet or mnet regularizationdeviance.glmreg glmreg glmreg.default glmreg.formula glmreg.matrix logLik.glmreg
Internal function to fit a GLM with lasso (or elastic net), snet and mnet regularizationglmreg_fit
fit a negative binomial model with lasso (or elastic net), snet and mnet regularizationglmregNB glmregNegbin
Hessian Matrix of Regularized EstimatorshessianReg
fit a robust generalized linear modelsirglm irglm.formula
Fit a robust penalized generalized linear modelsirglmreg irglmreg.default irglmreg.formula irglmreg.matrix
Internal function for robust penalized generalized linear modelsirglmreg_fit
fit case weighted support vector machines with robust loss functionscoef.irsvm irsvm irsvm.default irsvm.formula irsvm.matrix
Fit iteratively reweighted support vector machines for robust loss functionsirsvm_fit
Composite Loss Valueloss2
Composite Loss Value for epsilon-insensitive Typeloss2_irsvm
Composite Loss Value for GLMloss3
Meat Matrix EstimatormeatReg
Methods for mpath ObjectsAIC.glmreg AIC.zipath BIC.glmreg BIC.zipath
fit a nonconvex loss based robust linear modelncl ncl.default ncl.formula ncl.matrix
Internal function to fit a nonconvex loss based robust linear modelncl_fit
Optimize a nonconvex loss with regularizationnclreg nclreg.default nclreg.formula nclreg.matrix
Internal function to fitting a nonconvex loss based robust linear model with regularizationnclreg_fit
plot coefficients from a "glmreg" objectplot.glmreg
Model predictions based on a fitted "glmreg" object.coef.glmreg predict.glmreg
Methods for zipath Objectscoef.zipath fitted.zipath logLik.zipath model.matrix.zipath predict.zipath predprob.zipath print.summary.zipath residuals.zipath summary.zipath terms.zipath
compute p-values from penalized zero-inflated model with multi-split datapval.zipath
random number generation of zero-inflated count responserzi
Making Sandwiches with Bread and Meat for Regularized EstimatorssandwichReg
Standard Error of Regularized Estimatorsse se.zipath
standardize variablesstan
Summary Method Function for Objects of Class 'glmregNB'print.summary.glmregNB summary.glmregNB
find optimal path for penalized zero-inflated modeltuning.zipath
Compute weight valueupdate_wt
Fit zero-inflated count data linear model with lasso (or elastic net), snet or mnet regularizationzipath zipath.default zipath.formula zipath.matrix
Internal function to fit zero-inflated count data linear model with lasso (or elastic net), snet or mnet regularizationzipath_fit