Package: mlr3learners 0.9.0
mlr3learners: Recommended Learners for 'mlr3'
Recommended Learners for 'mlr3'. Extends 'mlr3' with interfaces to essential machine learning packages on CRAN. This includes, but is not limited to: (penalized) linear and logistic regression, linear and quadratic discriminant analysis, k-nearest neighbors, naive Bayes, support vector machines, and gradient boosting.
Authors:
mlr3learners_0.9.0.tar.gz
mlr3learners_0.9.0.tar.gz(r-4.5-noble)mlr3learners_0.9.0.tar.gz(r-4.4-noble)
mlr3learners_0.9.0.tgz(r-4.4-emscripten)mlr3learners_0.9.0.tgz(r-4.3-emscripten)
mlr3learners.pdf |mlr3learners.html✨
mlr3learners/json (API)
NEWS
# Install 'mlr3learners' in R: |
install.packages('mlr3learners', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/mlr-org/mlr3learners/issues
Last updated 2 days agofrom:39ccbdd1da. Checks:OK: 2. Indexed: no.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 25 2024 |
R-4.5-linux | OK | Nov 25 2024 |
Exports:LearnerClassifCVGlmnetLearnerClassifGlmnetLearnerClassifKKNNLearnerClassifLDALearnerClassifLogRegLearnerClassifMultinomLearnerClassifNaiveBayesLearnerClassifNnetLearnerClassifQDALearnerClassifRangerLearnerClassifSVMLearnerClassifXgboostLearnerRegrCVGlmnetLearnerRegrGlmnetLearnerRegrKKNNLearnerRegrKMLearnerRegrLMLearnerRegrNnetLearnerRegrRangerLearnerRegrSVMLearnerRegrXgboost
Dependencies:backportscheckmatecodetoolsdata.tabledigestevaluatefuturefuture.applyglobalslgrlistenvmlbenchmlr3mlr3measuresmlr3miscpalmerpenguinsparadoxparallellyPRROCR6uuid
Readme and manuals
Help Manual
Help page | Topics |
---|---|
mlr3learners: Recommended Learners for 'mlr3' | mlr3learners-package mlr3learners |
GLM with Elastic Net Regularization Classification Learner | LearnerClassifCVGlmnet mlr_learners_classif.cv_glmnet |
GLM with Elastic Net Regularization Classification Learner | LearnerClassifGlmnet mlr_learners_classif.glmnet |
k-Nearest-Neighbor Classification Learner | LearnerClassifKKNN mlr_learners_classif.kknn |
Linear Discriminant Analysis Classification Learner | LearnerClassifLDA mlr_learners_classif.lda |
Logistic Regression Classification Learner | LearnerClassifLogReg mlr_learners_classif.log_reg |
Multinomial log-linear learner via neural networks | LearnerClassifMultinom mlr_learners_classif.multinom |
Naive Bayes Classification Learner | LearnerClassifNaiveBayes mlr_learners_classif.naive_bayes |
Classification Neural Network Learner | LearnerClassifNnet mlr_learners_classif.nnet |
Quadratic Discriminant Analysis Classification Learner | LearnerClassifQDA mlr_learners_classif.qda |
Ranger Classification Learner | LearnerClassifRanger mlr_learners_classif.ranger |
Support Vector Machine | LearnerClassifSVM mlr_learners_classif.svm |
Extreme Gradient Boosting Classification Learner | LearnerClassifXgboost mlr_learners_classif.xgboost |
GLM with Elastic Net Regularization Regression Learner | LearnerRegrCVGlmnet mlr_learners_regr.cv_glmnet |
GLM with Elastic Net Regularization Regression Learner | LearnerRegrGlmnet mlr_learners_regr.glmnet |
k-Nearest-Neighbor Regression Learner | LearnerRegrKKNN mlr_learners_regr.kknn |
Kriging Regression Learner | LearnerRegrKM mlr_learners_regr.km |
Linear Model Regression Learner | LearnerRegrLM mlr_learners_regr.lm |
Neural Network Regression Learner | LearnerRegrNnet mlr_learners_regr.nnet |
Ranger Regression Learner | LearnerRegrRanger mlr_learners_regr.ranger |
Support Vector Machine | LearnerRegrSVM mlr_learners_regr.svm |
Extreme Gradient Boosting Regression Learner | LearnerRegrXgboost mlr_learners_regr.xgboost |