Package: missRanger 2.6.1

Michael Mayer

missRanger: Fast Imputation of Missing Values

Alternative implementation of the beautiful 'MissForest' algorithm used to impute mixed-type data sets by chaining random forests, introduced by Stekhoven, D.J. and Buehlmann, P. (2012) <doi:10.1093/bioinformatics/btr597>. Under the hood, it uses the lightning fast random forest package 'ranger'. Between the iterative model fitting, we offer the option of using predictive mean matching. This firstly avoids imputation with values not already present in the original data (like a value 0.3334 in 0-1 coded variable). Secondly, predictive mean matching tries to raise the variance in the resulting conditional distributions to a realistic level. This would allow, e.g., to do multiple imputation when repeating the call to missRanger(). Out-of-sample application is supported as well.

Authors:Michael Mayer [aut, cre]

missRanger_2.6.1.tar.gz
missRanger_2.6.1.tar.gz(r-4.5-noble)missRanger_2.6.1.tar.gz(r-4.4-noble)
missRanger_2.6.1.tgz(r-4.4-emscripten)missRanger_2.6.1.tgz(r-4.3-emscripten)
missRanger.pdf |missRanger.html
missRanger/json (API)
NEWS

# Install 'missRanger' in R:
install.packages('missRanger', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/mayer79/missranger/issues

Pkgdown site:https://mayer79.github.io

7.25 score 5 packages 209 scripts 2.5k downloads 5 mentions 4 exports 6 dependencies

Last updated 19 days agofrom:3d7a128872. Checks:OK: 2. Indexed: no.

TargetResultDate
Doc / VignettesOKDec 07 2024
R-4.5-linuxOKDec 07 2024

Exports:generateNAimputeUnivariatemissRangerpmm

Dependencies:FNNlatticeMatrixrangerRcppRcppEigen

Censored Variables

Rendered fromworking_with_censoring.Rmdusingknitr::rmarkdownon Dec 07 2024.

Last update: 2024-08-18
Started: 2023-03-24

Multiple Imputation

Rendered frommultiple_imputation.Rmdusingknitr::rmarkdownon Dec 07 2024.

Last update: 2024-08-18
Started: 2021-03-20

Using missRanger

Rendered frommissRanger.Rmdusingknitr::rmarkdownon Dec 07 2024.

Last update: 2024-08-18
Started: 2021-03-20