Package: mig 1.0
mig: Multivariate Inverse Gaussian Distribution
Provides utilities for estimation for the multivariate inverse Gaussian distribution of Minami (2003) <doi:10.1081/STA-120025379>, including random vector generation and explicit estimators of the location vector and scale matrix. The package implements kernel density estimators discussed in Belzile, Desgagnes, Genest and Ouimet (2024) <doi:10.48550/arXiv.2209.04757> for smoothing multivariate data on half-spaces.
Authors:
mig_1.0.tar.gz
mig_1.0.tar.gz(r-4.5-noble)mig_1.0.tar.gz(r-4.4-noble)
mig_1.0.tgz(r-4.4-emscripten)mig_1.0.tgz(r-4.3-emscripten)
mig.pdf |mig.html✨
mig/json (API)
# Install 'mig' in R: |
install.packages('mig', repos = 'https://cloud.r-project.org') |
Bug tracker:https://github.com/lbelzile/mig/issues0 issues
- geomagnetic - Magnetic storms
Last updated 8 months agofrom:c63d5ab735. Checks:3 OK. Indexed: no.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Mar 12 2025 |
R-4.5-linux-x86_64 | OK | Mar 12 2025 |
R-4.4-linux-x86_64 | OK | Mar 12 2025 |
Exports:.lsum.mig_mle.mig_momdmigdmig_laplaciandtelliptfit_migmig_kdensmig_kdens_bandwidthmig_lcvmig_loglik_gradmig_loglik_hessianmig_loglik_laplacianmig_rlcvnormalrule_bandwidthpmigrmigrtellipttellipt_kdens
Dependencies:alabamanleqslvnumDerivqrngRcppRcppArmadillospacefillrstatmodTruncatedNormal
Citation
To cite package ‘mig’ in publications use:
Ouimet F, Belzile L (2024). mig: Multivariate Inverse Gaussian Distribution. R package version 1.0, https://CRAN.R-project.org/package=mig.
Corresponding BibTeX entry:
@Manual{, title = {mig: Multivariate Inverse Gaussian Distribution}, author = {Frederic Ouimet and Leo Belzile}, year = {2024}, note = {R package version 1.0}, url = {https://CRAN.R-project.org/package=mig}, }
Readme and manuals
Multivariate inverse Gaussian
This R package consists of utilities for multivariate inverse Gaussian (MIG) models with mean $\boldsymbol{\xi}$ and scale matrix $\boldsymbol{\Omega}$ defined over the halfspace ${\boldsymbol{x} \in \mathbb{R}^d: \boldsymbol{\beta}^\top\boldsymbol{x} > 0}$, including density evaluation and random number generation and kernel smoothing.
Distributions
-
mig
for the MIG distribution(rmig
for random number generation anddmig
for density) -
tellipt
(rtellipt
for random vector generation anddtellipt
the density) for truncated Student-$t$ or Gaussian distribution over the half space ${\boldsymbol{x}: \boldsymbol{\beta}^\top\boldsymbol{x}>\delta}$ for $\delta \geq 0$. -
fit_mig
to estimate the parameters of the MIG distribution via maximum likelihood (mle
) or the method of moments (mom
).
Kernel density estimation
-
mig_kdens_bandwidth
to estimate the bandwidth matrix minimizing the asymptotic mean integrated squared error (AMISE) or the leave-one-out likelihood cross validation, minimizing the Kullback--Leibler divergence. Theamise
estimators are estimated by drawing from amig
or truncated Gaussian vector via Monte Carlo -
normalrule_bandwidth
for the normal rule of Scott for the Gaussian kernel -
mig_kdens
for the kernel density estimator -
tellipt_kdens
for the truncated Gaussian kernel density estimator
Help Manual
Help page | Topics |
---|---|
Multivariate inverse Gaussian distribution | dmig pmig rmig |
Fit multivariate inverse Gaussian distribution | fit_mig |
Magnetic storms | geomagnetic |
Multivariate inverse Gaussian kernel density estimator | mig_kdens |
Optimal scale matrix for MIG kernel density estimation | mig_kdens_bandwidth |
Likelihood cross-validation for kernel density estimation with MIG | mig_lcv |
Robust likelihood cross-validation for kernel density estimation | mig_rlcv |