Package: midasml 0.1.10

Jonas Striaukas

midasml: Estimation and Prediction Methods for High-Dimensional Mixed Frequency Time Series Data

The 'midasml' package implements estimation and prediction methods for high-dimensional mixed-frequency (MIDAS) time-series and panel data regression models. The regularized MIDAS models are estimated using orthogonal (e.g. Legendre) polynomials and sparse-group LASSO (sg-LASSO) estimator. For more information on the 'midasml' approach see Babii, Ghysels, and Striaukas (2021, JBES forthcoming) <doi:10.1080/07350015.2021.1899933>. The package is equipped with the fast implementation of the sg-LASSO estimator by means of proximal block coordinate descent. High-dimensional mixed frequency time-series data can also be easily manipulated with functions provided in the package.

Authors:Jonas Striaukas [cre, aut], Andrii Babii [aut], Eric Ghysels [aut], Alex Kostrov [ctb]

midasml_0.1.10.tar.gz
midasml_0.1.10.tar.gz(r-4.5-noble)midasml_0.1.10.tar.gz(r-4.4-noble)
midasml_0.1.10.tgz(r-4.4-emscripten)midasml_0.1.10.tgz(r-4.3-emscripten)
midasml.pdf |midasml.html
midasml/json (API)

# Install 'midasml' in R:
install.packages('midasml', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/jstriaukas/midasml/issues

Uses libs:
  • fortran– Runtime library for GNU Fortran applications
Datasets:

fortran

1.60 score 4 stars 5 scripts 968 downloads 17 exports 16 dependencies

Last updated 3 years agofrom:5580798564. Checks:OK: 2. Indexed: no.

TargetResultDate
Doc / VignettesOKDec 21 2024
R-4.5-linux-x86_64OKDec 21 2024

Exports:cv.panel.sglfitcv.sglfitdateMatchgbic.panel.sglfitic.sglfitlbmidas.ardlmixed_freq_datamixed_freq_data_singlemonthBeginmonthEndreg.panel.sglreg.sglsglfitthetafittscv.sglfit

Dependencies:codetoolscpp11digestdoParalleldoRNGforeachgenericsiteratorslatticelubridateMatrixrandtoolboxrngtoolsrngWELLsnowtimechange