Package: midasml 0.1.10
midasml: Estimation and Prediction Methods for High-Dimensional Mixed Frequency Time Series Data
The 'midasml' package implements estimation and prediction methods for high-dimensional mixed-frequency (MIDAS) time-series and panel data regression models. The regularized MIDAS models are estimated using orthogonal (e.g. Legendre) polynomials and sparse-group LASSO (sg-LASSO) estimator. For more information on the 'midasml' approach see Babii, Ghysels, and Striaukas (2021, JBES forthcoming) <doi:10.1080/07350015.2021.1899933>. The package is equipped with the fast implementation of the sg-LASSO estimator by means of proximal block coordinate descent. High-dimensional mixed frequency time-series data can also be easily manipulated with functions provided in the package.
Authors:
midasml_0.1.10.tar.gz
midasml_0.1.10.tar.gz(r-4.5-noble)midasml_0.1.10.tar.gz(r-4.4-noble)
midasml_0.1.10.tgz(r-4.4-emscripten)midasml_0.1.10.tgz(r-4.3-emscripten)
midasml.pdf |midasml.html✨
midasml/json (API)
# Install 'midasml' in R: |
install.packages('midasml', repos = 'https://cloud.r-project.org') |
Bug tracker:https://github.com/jstriaukas/midasml/issues3 issues
- alfred_vintages - ALFRED monthly and quarterly series vintages
- market_ret - SNP500 returns
- rgdp_dates - Real GDP release dates
- rgdp_vintages - Real GDP vintages
- us_rgdp - US real GDP data with several high-frequency predictors
Last updated 3 years agofrom:5580798564. Checks:3 OK. Indexed: no.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Mar 21 2025 |
R-4.5-linux-x86_64 | OK | Mar 21 2025 |
R-4.4-linux-x86_64 | OK | Mar 21 2025 |
Exports:cv.panel.sglfitcv.sglfitdateMatchgbic.panel.sglfitic.sglfitlbmidas.ardlmixed_freq_datamixed_freq_data_singlemonthBeginmonthEndreg.panel.sglreg.sglsglfitthetafittscv.sglfit
Dependencies:codetoolscpp11digestdoParalleldoRNGforeachgenericsiteratorslatticelubridateMatrixrandtoolboxrngtoolsrngWELLsnowtimechange
Citation
To cite package ‘midasml’ in publications use:
Striaukas J, Babii A, Eric Ghysels (2022). midasml: Estimation and Prediction Methods for High-Dimensional Mixed Frequency Time Series Data. R package version 0.1.10, https://CRAN.R-project.org/package=midasml.
Corresponding BibTeX entry:
@Manual{, title = {midasml: Estimation and Prediction Methods for High-Dimensional Mixed Frequency Time Series Data}, author = {Jonas Striaukas and Andrii Babii and {Eric Ghysels}}, year = {2022}, note = {R package version 0.1.10}, url = {https://CRAN.R-project.org/package=midasml}, }