Package: miceFast 0.8.5
miceFast: Fast Imputations Using 'Rcpp' and 'Armadillo'
Fast imputations under the object-oriented programming paradigm. Moreover there are offered a few functions built to work with popular R packages such as 'data.table' or 'dplyr'. The biggest improvement in time performance could be achieve for a calculation where a grouping variable have to be used. A single evaluation of a quantitative model for the multiple imputations is another major enhancement. A new major improvement is one of the fastest predictive mean matching in the R world because of presorting and binary search.
Authors:
miceFast_0.8.5.tar.gz
miceFast_0.8.5.tar.gz(r-4.5-noble)miceFast_0.8.5.tar.gz(r-4.4-noble)
miceFast_0.8.5.tgz(r-4.4-emscripten)miceFast_0.8.5.tgz(r-4.3-emscripten)
miceFast.pdf |miceFast.html✨
miceFast/json (API)
NEWS
# Install 'miceFast' in R: |
install.packages('miceFast', repos = 'https://cloud.r-project.org') |
Bug tracker:https://github.com/polkas/micefast/issues2 issues
- air_miss - Airquality dataset with additional variables
Last updated 2 months agofrom:f57885a1b2. Checks:3 OK. Indexed: no.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Mar 06 2025 |
R-4.5-linux-x86_64 | OK | Mar 06 2025 |
R-4.4-linux-x86_64 | OK | Mar 06 2025 |
Exports:compare_impcorrDatafill_NAfill_NA_NmiceFastnaive_fill_NAneiboupset_NAVIF
Dependencies:data.tableRcppRcppArmadillo
Citation
To cite package ‘miceFast’ in publications use:
Nasinski M (2025). miceFast: Fast Imputations Using 'Rcpp' and 'Armadillo'. R package version 0.8.5, https://CRAN.R-project.org/package=miceFast.
Corresponding BibTeX entry:
@Manual{, title = {miceFast: Fast Imputations Using 'Rcpp' and 'Armadillo'}, author = {Maciej Nasinski}, year = {2025}, note = {R package version 0.8.5}, url = {https://CRAN.R-project.org/package=miceFast}, }
Readme and manuals
miceFast

Author: Maciej Nasinski
Check the miceFast website for more details
Overview
miceFast provides fast methods for imputing missing data, leveraging an object-oriented programming paradigm and optimized linear algebra routines.
The package includes convenient helper functions compatible with data.table, dplyr, and other popular R packages.
Major speed improvements occur when:
- Using a grouping variable, where the data is automatically sorted by group, significantly reducing computation time.
- Performing multiple imputations, by evaluating the underlying quantitative model only once for multiple draws.
- Running Predictive Mean Matching (PMM), thanks to presorting and binary search.
For performance details, see performance_validity.R
in the extdata
folder.
It is recommended to read the Advanced Usage Vignette.
Installation
You can install miceFast from CRAN:
install.packages("miceFast")
Or install the development version from GitHub:
# install.packages("devtools")
devtools::install_github("polkas/miceFast")
Quick Example
Below is a short demonstration. See the vignette for advanced usage and best practices.
library(miceFast)
set.seed(1234)
data(air_miss)
# Visualize the NA structure
upset_NA(air_miss, 6)
# Simple and naive fill
imputed_data <- naive_fill_NA(air_miss)
# Compare with other packages:
# Hmisc
library(Hmisc)
data.frame(Map(function(x) Hmisc::impute(x, "random"), air_miss))
# mice
library(mice)
mice::complete(mice::mice(air_miss, printFlag = FALSE))
Key Features
-
Object-Oriented Interface via
miceFast
objects (Rcpp modules). -
Convenient Helpers:
-
fill_NA()
: Single imputation (lda
,lm_pred
,lm_bayes
,lm_noise
). -
fill_NA_N()
: Multiple imputations (pmm
,lm_bayes
,lm_noise
). -
VIF()
: Variance Inflation Factor calculations. -
naive_fill_NA()
: Automatic naive imputations. -
compare_imp()
: Compare original vs. imputed values. -
upset_NA()
: Visualize NA structure using UpSetR.
-
Quick Reference Table:
Function | Description |
---|---|
new(miceFast) |
Creates an OOP instance with numerous imputation methods (see the vignette). |
fill_NA() |
Single imputation: lda , lm_pred , lm_bayes , lm_noise . |
fill_NA_N() |
Multiple imputations (N repeats): pmm , lm_bayes , lm_noise . |
VIF() |
Computes Variance Inflation Factors. |
naive_fill_NA() |
Performs automatic, naive imputations. |
compare_imp() |
Compares imputations vs. original data. |
upset_NA() |
Visualizes NA structure using an UpSet plot. |
Performance Highlights
Benchmark testing (on R 4.2, macOS M1) shows miceFast can significantly reduce computation time, especially in these scenarios:
- Linear Discriminant Analysis (LDA): ~5x faster.
- Grouping Variable Imputations: ~10x faster (and can exceed 100x in some edge cases).
-
Multiple Imputations: ~
x * (number of multiple imputations)
faster, since the model is computed only once. - Variance Inflation Factors (VIF): ~5x faster, because we only compute the inverse of X'X.
- Predictive Mean Matching (PMM): ~3x faster, thanks to presorting and binary search.
For performance details, see performance_validity.R
in the extdata
folder.
Help Manual
Help page | Topics |
---|---|
miceFast package for fast multiple imputations. | miceFast-package |
airquality dataset with additional variables | air_miss |
Comparing imputations and original data distributions | compare_imp |
'fill_NA' function for the imputations purpose. | fill_NA fill_NA.data.frame fill_NA.data.table fill_NA.matrix |
'fill_NA_N' function for the multiple imputations purpose | fill_NA_N fill_NA_N.data.frame fill_NA_N.data.table fill_NA_N.matrix |
'naive_fill_NA' function for the simple and automatic imputation | naive_fill_NA naive_fill_NA.data.frame naive_fill_NA.data.table naive_fill_NA.matrix |
Finding in random manner one of the k closets points in a certain vector for each value in a second vector | neibo |
Class '"Rcpp_corrData"' | corrData Rcpp_corrData-class |
Class '"Rcpp_miceFast"' | miceFast Rcpp_miceFast-class |
upset plot for NA values | upset_NA |
'VIF' function for assessing VIF. | VIF VIF.data.frame VIF.data.table VIF.matrix |