Package: melt 1.11.4

melt: Multiple Empirical Likelihood Tests
Performs multiple empirical likelihood tests. It offers an easy-to-use interface and flexibility in specifying hypotheses and calibration methods, extending the framework to simultaneous inferences. The core computational routines are implemented using the 'Eigen' 'C++' library and 'RcppEigen' interface, with 'OpenMP' for parallel computation. Details of the testing procedures are provided in Kim, MacEachern, and Peruggia (2023) <doi:10.1080/10485252.2023.2206919>. A companion paper by Kim, MacEachern, and Peruggia (2024) <doi:10.18637/jss.v108.i05> is available for further information. This work was supported by the U.S. National Science Foundation under Grants No. SES-1921523 and DMS-2015552.
Authors:
melt_1.11.4.tar.gz
melt_1.11.4.tar.gz(r-4.5-noble)melt_1.11.4.tar.gz(r-4.4-noble)
melt_1.11.4.tgz(r-4.4-emscripten)melt_1.11.4.tgz(r-4.3-emscripten)
melt.pdf |melt.html✨
melt/json (API)
NEWS
# Install 'melt' in R: |
install.packages('melt', repos = 'https://cloud.r-project.org') |
Bug tracker:https://github.com/ropensci/melt/issues0 issues
Pkgdown site:https://docs.ropensci.org
- clothianidin - Clothianidin concentration in maize plants
- thiamethoxam - Thiamethoxam applications in squash crops
Last updated 11 months agofrom:1f0a23934c. Checks:3 OK. Indexed: no.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Mar 20 2025 |
R-4.5-linux-x86_64 | OK | Mar 20 2025 |
R-4.4-linux-x86_64 | OK | Mar 20 2025 |
Exports:chisqcoefconfintconfregconvcritValel_controlel_evalel_glmel_lmel_meanel_sdeldelmteltformulagetDFgetOptimlogLlogLRlogProbnobsplotprintpValsigTestssummaryweights
melt: Multiple Empirical Likelihood Tests
Rendered fromarticle.Rnw
usingknitr::knitr
on Mar 20 2025.Last update: 2024-05-18
Started: 2024-03-02
Model fitting
Rendered frommodel.Rmd
usingknitr::rmarkdown
on Mar 20 2025.Last update: 2024-03-02
Started: 2022-08-12
Performance
Rendered fromperformance.Rmd
usingknitr::rmarkdown
on Mar 20 2025.Last update: 2024-03-02
Started: 2022-07-10
Citation
To cite melt in publications use:
Kim E, MacEachern SN, Peruggia M (2024). “melt: Multiple Empirical Likelihood Tests in R.” Journal of Statistical Software, 108(5), 1–33. doi:10.18637/jss.v108.i05.
Corresponding BibTeX entry:
@Article{, title = {{melt}: Multiple Empirical Likelihood Tests in {R}}, author = {Eunseop Kim and Steven N. MacEachern and Mario Peruggia}, journal = {Journal of Statistical Software}, year = {2024}, volume = {108}, number = {5}, pages = {1--33}, doi = {10.18637/jss.v108.i05}, }
Readme and manuals
melt

Overview
melt provides a unified framework for data analysis with empirical likelihood methods. A collection of functions is available to perform multiple empirical likelihood tests and construct confidence intervals for various models in ‘R’. melt offers an easy-to-use interface and flexibility in specifying hypotheses and calibration methods, extending the framework to simultaneous inferences. The core computational routines are implemented with the ‘Eigen’ ‘C++’ library and ‘RcppEigen’ interface, with ‘OpenMP’ for parallel computation. Details of the testing procedures are provided in Kim, MacEachern, and Peruggia (2023). The package has a companion paper by Kim, MacEachern, and Peruggia (2024). This work was supported by the U.S. National Science Foundation under Grants No. SES-1921523 and DMS-2015552.
Installation
You can install the latest stable release of melt from CRAN.
install.packages("melt")
You can install the development version of melt from GitHub or R-universe.
# install.packages("pak")
pak::pak("ropensci/melt")
install.packages("melt", repos = "https://ropensci.r-universe.dev")
Main functions
melt provides an intuitive API for performing the most common data analysis tasks:
-
el_mean()
computes empirical likelihood for the mean. -
el_lm()
fits a linear model with empirical likelihood. -
el_glm()
fits a generalized linear model with empirical likelihood. -
confint()
computes confidence intervals for model parameters. -
confreg()
computes confidence region for model parameters. -
elt()
tests a hypothesis with various calibration options. -
elmt()
performs multiple testing simultaneously.
Usage
library(melt)
set.seed(971112)
## Test for the mean
data("precip")
(fit <- el_mean(precip, par = 30))
#>
#> Empirical Likelihood
#>
#> Model: mean
#>
#> Maximum EL estimates:
#> [1] 34.89
#>
#> Chisq: 8.285, df: 1, Pr(>Chisq): 0.003998
#> EL evaluation: converged
## Adjusted empirical likelihood calibration
elt(fit, rhs = 30, calibrate = "ael")
#>
#> Empirical Likelihood Test
#>
#> Hypothesis:
#> par = 30
#>
#> Significance level: 0.05, Calibration: Adjusted EL
#>
#> Statistic: 7.744, Critical value: 3.841
#> p-value: 0.005389
#> EL evaluation: converged
## Bootstrap calibration
elt(fit, rhs = 30, calibrate = "boot")
#>
#> Empirical Likelihood Test
#>
#> Hypothesis:
#> par = 30
#>
#> Significance level: 0.05, Calibration: Bootstrap
#>
#> Statistic: 8.285, Critical value: 3.84
#> p-value: 0.0041
#> EL evaluation: converged
## F calibration
elt(fit, rhs = 30, calibrate = "f")
#>
#> Empirical Likelihood Test
#>
#> Hypothesis:
#> par = 30
#>
#> Significance level: 0.05, Calibration: F
#>
#> Statistic: 8.285, Critical value: 3.98
#> p-value: 0.005318
#> EL evaluation: converged
## Linear model
data("mtcars")
fit_lm <- el_lm(mpg ~ disp + hp + wt + qsec, data = mtcars)
summary(fit_lm)
#>
#> Empirical Likelihood
#>
#> Model: lm
#>
#> Call:
#> el_lm(formula = mpg ~ disp + hp + wt + qsec, data = mtcars)
#>
#> Number of observations: 32
#> Number of parameters: 5
#>
#> Parameter values under the null hypothesis:
#> (Intercept) disp hp wt qsec
#> 29.04 0.00 0.00 0.00 0.00
#>
#> Lagrange multipliers:
#> [1] -260.167 -2.365 1.324 -59.781 25.175
#>
#> Maximum EL estimates:
#> (Intercept) disp hp wt qsec
#> 27.329638 0.002666 -0.018666 -4.609123 0.544160
#>
#> logL: -327.6 , logLR: -216.7
#> Chisq: 433.4, df: 4, Pr(>Chisq): < 2.2e-16
#> Constrained EL: converged
#>
#> Coefficients:
#> Estimate Chisq Pr(>Chisq)
#> (Intercept) 27.329638 443.208 < 2e-16 ***
#> disp 0.002666 0.365 0.54575
#> hp -0.018666 10.730 0.00105 **
#> wt -4.609123 439.232 < 2e-16 ***
#> qsec 0.544160 440.583 < 2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
cr <- confreg(fit_lm, parm = c("disp", "hp"), npoints = 200)
plot(cr)

data("clothianidin")
fit2_lm <- el_lm(clo ~ -1 + trt, data = clothianidin)
summary(fit2_lm)
#>
#> Empirical Likelihood
#>
#> Model: lm
#>
#> Call:
#> el_lm(formula = clo ~ -1 + trt, data = clothianidin)
#>
#> Number of observations: 102
#> Number of parameters: 4
#>
#> Parameter values under the null hypothesis:
#> trtNaked trtFungicide trtLow trtHigh
#> 0 0 0 0
#>
#> Lagrange multipliers:
#> [1] -4.116e+06 -7.329e-01 -1.751e+00 -1.418e-01
#>
#> Maximum EL estimates:
#> trtNaked trtFungicide trtLow trtHigh
#> -4.479 -3.427 -2.800 -1.307
#>
#> logL: -918.9 , logLR: -447.2
#> Chisq: 894.4, df: 4, Pr(>Chisq): < 2.2e-16
#> EL evaluation: maximum iterations reached
#>
#> Coefficients:
#> Estimate Chisq Pr(>Chisq)
#> trtNaked -4.479 411.072 < 2e-16 ***
#> trtFungicide -3.427 59.486 1.23e-14 ***
#> trtLow -2.800 62.955 2.11e-15 ***
#> trtHigh -1.307 4.653 0.031 *
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
confint(fit2_lm)
#> lower upper
#> trtNaked -5.002118 -3.9198229
#> trtFungicide -4.109816 -2.6069870
#> trtLow -3.681837 -1.9031795
#> trtHigh -2.499165 -0.1157222
## Generalized linear model
data("thiamethoxam")
fit_glm <- el_glm(visit ~ log(mass) + fruit + foliage + var + trt,
family = quasipoisson(link = "log"), data = thiamethoxam,
control = el_control(maxit = 100, tol = 1e-08, nthreads = 4)
)
summary(fit_glm)
#>
#> Empirical Likelihood
#>
#> Model: glm (quasipoisson family with log link)
#>
#> Call:
#> el_glm(formula = visit ~ log(mass) + fruit + foliage + var +
#> trt, family = quasipoisson(link = "log"), data = thiamethoxam,
#> control = el_control(maxit = 100, tol = 1e-08, nthreads = 4))
#>
#> Number of observations: 165
#> Number of parameters: 8
#>
#> Parameter values under the null hypothesis:
#> (Intercept) log(mass) fruit foliage varGZ trtSpray
#> -0.1098 0.0000 0.0000 0.0000 0.0000 0.0000
#> trtFurrow trtSeed phi
#> 0.0000 0.0000 1.4623
#>
#> Lagrange multipliers:
#> [1] 1319.19 210.54 -12.99 -24069.07 -318.90 -189.14 -53.35
#> [8] 262.32 -170.21
#>
#> Maximum EL estimates:
#> (Intercept) log(mass) fruit foliage varGZ trtSpray
#> -0.10977 0.24750 0.04654 -19.40632 -0.25760 0.06724
#> trtFurrow trtSeed
#> -0.03634 0.34790
#>
#> logL: -2272 , logLR: -1429
#> Chisq: 2859, df: 7, Pr(>Chisq): < 2.2e-16
#> Constrained EL: initialization failed
#>
#> Coefficients:
#> Estimate Chisq Pr(>Chisq)
#> (Intercept) -0.10977 0.090 0.764
#> log(mass) 0.24750 425.859 < 2e-16 ***
#> fruit 0.04654 29.024 7.15e-08 ***
#> foliage -19.40632 65.181 6.83e-16 ***
#> varGZ -0.25760 17.308 3.18e-05 ***
#> trtSpray 0.06724 0.860 0.354
#> trtFurrow -0.03634 0.217 0.641
#> trtSeed 0.34790 19.271 1.13e-05 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Dispersion for quasipoisson family: 1.462288
## Test of no treatment effect
contrast <- c(
"trtNaked - trtFungicide", "trtFungicide - trtLow", "trtLow - trtHigh"
)
elt(fit2_lm, lhs = contrast)
#>
#> Empirical Likelihood Test
#>
#> Hypothesis:
#> trtNaked - trtFungicide = 0
#> trtFungicide - trtLow = 0
#> trtLow - trtHigh = 0
#>
#> Significance level: 0.05, Calibration: Chi-square
#>
#> Statistic: 26.6, Critical value: 7.815
#> p-value: 7.148e-06
#> Constrained EL: converged
## Multiple testing
contrast2 <- rbind(
c(0, 0, 0, 0, 0, 1, 0, 0),
c(0, 0, 0, 0, 0, 0, 1, 0),
c(0, 0, 0, 0, 0, 0, 0, 1)
)
elmt(fit_glm, lhs = contrast2)
#>
#> Empirical Likelihood Multiple Tests
#>
#> Overall significance level: 0.05
#>
#> Calibration: Multivariate chi-square
#>
#> Hypotheses:
#> Estimate Chisq Df
#> trtSpray = 0 0.06724 0.860 1
#> trtFurrow = 0 -0.03634 0.217 1
#> trtSeed = 0 0.34790 19.271 1
Please note that this package is released with a Contributor Code of Conduct. By contributing to this project, you agree to abide by its terms.
Help Manual
Help page | Topics |
---|---|
CEL class | CEL CEL-class |
Chi-square statistic | chisq chisq,EL-method chisq,ELMT-method chisq,ELT-method chisq,SummaryEL-method chisq,SummaryELMT-method chisq,SummaryELT-method chisq,SummaryLM-method |
Clothianidin concentration in maize plants | clothianidin |
Model coefficients | coef coef,EL-method coef,ELMT-method coef,SummaryEL-method coef,SummaryLM-method |
Confidence interval for model parameters | confint confint,EL-method confint,ELMT-method |
Confidence region for model parameters | confreg confreg,EL-method |
ConfregEL class | ConfregEL ConfregEL-class |
ControlEL class | ControlEL ControlEL-class |
Convergence check | conv conv,CEL-method conv,EL-method conv,ELT-method conv,SummaryEL-method conv,SummaryELT-method conv,SummaryLM-method |
Critical value | critVal critVal,ELMT-method critVal,ELT-method critVal,SummaryELMT-method critVal,SummaryELT-method |
Control parameters for computation | el_control |
Empirical likelihood for general estimating functions | el_eval |
Empirical likelihood for generalized linear models | el_glm |
Empirical likelihood for linear models | el_lm |
Empirical likelihood for the mean | el_mean |
Empirical likelihood for the standard deviation | el_sd |
EL class | EL EL-class |
Empirical likelihood displacement | eld eld,EL-method eld,GLM-method eld,missing-method |
ELD class | ELD ELD-class |
Empirical likelihood multiple tests | elmt elmt,EL-method |
ELMT class | ELMT ELMT-class |
Empirical likelihood test | elt elt,EL-method elt,missing-method elt,QGLM-method elt,SD-method |
ELT class | ELT ELT-class |
Degrees of freedom | getDF getDF,EL-method getDF,ELMT-method getDF,ELT-method getDF,SummaryEL-method getDF,SummaryELMT-method getDF,SummaryLM-method |
Optimization results | getOptim getOptim,EL-method getOptim,ELT-method getOptim,SummaryEL-method getOptim,SummaryELT-method getOptim,SummaryLM-method |
GLM class | GLM GLM-class |
LM class | formula,LM-method LM LM-class |
Empirical log-likelihood | logL logL,EL-method logL,ELT-method logL,SummaryEL-method logL,SummaryELT-method logL,SummaryLM-method |
Empirical log-likelihood ratio | logLR logLR,EL-method logLR,ELT-method logLR,SummaryEL-method logLR,SummaryELT-method logLR,SummaryLM-method |
Log probabilities | logProb logProb,EL-method logProb,ELT-method |
Number of observations in a model | nobs nobs,EL-method nobs,SummaryEL-method nobs,SummaryLM-method |
Plot methods | plot plot,ConfregEL-method plot,EL-method plot,ELD-method |
Print methods | print print,EL-method print,ELMT-method print,ELT-method print,LM-method print,SummaryEL-method print,SummaryELMT-method print,SummaryELT-method print,SummaryGLM-method print,SummaryLM-method |
p-value | pVal pVal,EL-method pVal,ELMT-method pVal,ELT-method pVal,SummaryEL-method pVal,SummaryELMT-method pVal,SummaryELT-method pVal,SummaryLM-method |
QGLM class | QGLM QGLM-class |
SD class | SD SD-class |
Significance tests | sigTests sigTests,LM-method |
Summary methods | summary summary,EL-method summary,ELMT-method summary,ELT-method summary,GLM-method summary,LM-method summary,QGLM-method |
SummaryEL class | SummaryEL SummaryEL-class |
SummaryELMT class | SummaryELMT SummaryELMT-class |
SummaryELT class | SummaryELT SummaryELT-class |
SummaryGLM class | SummaryGLM SummaryGLM-class |
SummaryLM class | SummaryLM SummaryLM-class |
SummaryQGLM class | SummaryQGLM SummaryQGLM-class |
Thiamethoxam applications in squash crops | thiamethoxam |
Model weights | weights weights,EL-method |