Package: marginaleffects 0.25.1

Vincent Arel-Bundock

marginaleffects: Predictions, Comparisons, Slopes, Marginal Means, and Hypothesis Tests

Compute and plot predictions, slopes, marginal means, and comparisons (contrasts, risk ratios, odds, etc.) for over 100 classes of statistical and machine learning models in R. Conduct linear and non-linear hypothesis tests, or equivalence tests. Calculate uncertainty estimates using the delta method, bootstrapping, or simulation-based inference. Details can be found in Arel-Bundock, Greifer, and Heiss (2024) <doi:10.18637/jss.v111.i09>.

Authors:Vincent Arel-Bundock [aut, cre, cph], Noah Greifer [ctb], Etienne Bacher [ctb], Grant McDermott [ctb], Andrew Heiss [ctb]

marginaleffects_0.25.1.tar.gz
marginaleffects_0.25.1.tar.gz(r-4.5-noble)marginaleffects_0.25.1.tar.gz(r-4.4-noble)
marginaleffects_0.25.1.tgz(r-4.4-emscripten)marginaleffects_0.25.1.tgz(r-4.3-emscripten)
marginaleffects.pdf |marginaleffects.html
marginaleffects/json (API)
NEWS

# Install 'marginaleffects' in R:
install.packages('marginaleffects', repos = 'https://cloud.r-project.org')

Bug tracker:https://github.com/vincentarelbundock/marginaleffects/issues14 issues

Uses libs:
  • c++– GNU Standard C++ Library v3

On CRAN:

Conda:r-marginaleffects-0.25.1(2025-03-31)

cpp

6.39 score 1 stars 10 packages 21k downloads 26 exports 9 dependencies

Last updated 2 days agofrom:ee433201af. Checks:3 OK. Indexed: no.

TargetResultLatest binary
Doc / VignettesOKMar 29 2025
R-4.5-linux-x86_64OKMar 29 2025
R-4.4-linux-x86_64OKMar 29 2025

Exports:avg_comparisonsavg_predictionsavg_slopescomparisonsdatagridexpect_marginsexpect_predictionsexpect_slopesget_coefget_datasetget_drawsget_group_namesget_model_matrixget_predictget_vcovglancehypothesesinferencesplot_comparisonsplot_predictionsplot_slopesposterior_drawspredictionsset_coefslopestidy

Dependencies:backportscheckmatedata.tableFormulagenericsinsightRcppRcppEigenrlang

Model to Meaning

Rendered frommodel_to_meaning.Rmdusingknitr::rmarkdownon Mar 29 2025.

Last update: 2025-03-29
Started: 2025-02-01

Citation

To cite marginaleffects in publications use:

Arel-Bundock V, Greifer N, Heiss A (2024). “How to Interpret Statistical Models Using marginaleffects for R and Python.” Journal of Statistical Software, 111(9), 1–32. doi:10.18637/jss.v111.i09.

Corresponding BibTeX entry:

  @Article{,
    title = {How to Interpret Statistical Models Using
      {marginaleffects} for {R} and {Python}},
    author = {Vincent Arel-Bundock and Noah Greifer and Andrew Heiss},
    journal = {Journal of Statistical Software},
    year = {2024},
    volume = {111},
    number = {9},
    pages = {1--32},
    doi = {10.18637/jss.v111.i09},
  }

Readme and manuals

The marginaleffects package for R and Python offers a single point of entry to easily interpret the results of over 100 classes of models, using a simple and consistent user interface.

This package comes with a free full-length online book, with extensive tutorials: https://marginaleffects.com

The package’s benefits include:

  • Powerful: It can compute and plot predictions; comparisons (contrasts, risk ratios, etc.); slopes; and conduct hypothesis and equivalence tests for over 100 different classes of models in R.
  • Simple: All functions share a simple and unified interface.
  • Documented: Each function is thoroughly documented with abundant examples. The Marginal Effects Zoo website includes 20,000+ words of vignettes and case studies.
  • Efficient: Some operations can be up to 1000 times faster and use 30 times less memory than with the margins package.
  • Valid: When possible, numerical results are checked against alternative software like Stata or other R packages.
  • Thin: The R package requires relatively few dependencies.
  • Standards-compliant: marginaleffects follows “tidy” principles and returns simple data frames that work with all standard R functions. The outputs are easy to program with and feed to other packages like ggplot2 or modelsummary.
  • Extensible: Adding support for new models is very easy, often requiring less than 10 lines of new code. Please submit feature requests on Github.
  • Active development: Bugs are fixed promptly.

To cite marginaleffects in publications use:

Arel-Bundock V, Greifer N, Heiss A (2024). “How to Interpret Statistical Models Using marginaleffects for R and Python.” Journal of Statistical Software, 111(9), 1-32. doi:10.18637/jss.v111.i09 https://doi.org/10.18637/jss.v111.i09.

A BibTeX entry for LaTeX users is

@Article{, title = {How to Interpret Statistical Models Using {marginaleffects} for {R} and {Python}}, author = {Vincent Arel-Bundock and Noah Greifer and Andrew Heiss}, journal = {Journal of Statistical Software}, year = {2024}, volume = {111}, number = {9}, pages = {1–32}, doi = {10.18637/jss.v111.i09}, }

Help Manual

Help pageTopics
Comparisons Between Predictions Made With Different Regressor Valuesavg_comparisons comparisons
Data gridsdatagrid
Download and Read Datasets from 'marginaleffects' or Rdatasetsget_dataset
Extract Posterior Draws or Bootstrap Resamples from 'marginaleffects' Objectsget_draws
(Non-)Linear Tests for Null Hypotheses, Joint Hypotheses, Equivalence, Non Superiority, and Non Inferiorityhypotheses
(EXPERIMENTAL) Bootstrap, Conformal, and Simulation-Based Inferenceinferences
Plot Conditional or Marginal Comparisonsplot_comparisons
Plot Conditional or Marginal Predictionsplot_predictions
Plot Conditional or Marginal Slopesplot_slopes
Predictionsavg_predictions predictions
Print 'marginaleffects' objectsprint.marginaleffects
Slopes (aka Partial derivatives, Marginal Effects, or Trends)avg_slopes slopes