Package: magi 1.2.4

Shihao Yang

magi: MAnifold-Constrained Gaussian Process Inference

Provides fast and accurate inference for the parameter estimation problem in Ordinary Differential Equations, including the case when there are unobserved system components. Implements the MAGI method (MAnifold-constrained Gaussian process Inference) of Yang, Wong, and Kou (2021) <doi:10.1073/pnas.2020397118>. A user guide is provided by the accompanying software paper Wong, Yang, and Kou (2024) <doi:10.18637/jss.v109.i04>.

Authors:Shihao Yang [aut, cre], Samuel W.K. Wong [aut], S.C. Kou [ctb, cph]

magi_1.2.4.tar.gz
magi_1.2.4.tar.gz(r-4.5-noble)magi_1.2.4.tar.gz(r-4.4-noble)
magi_1.2.4.tgz(r-4.4-emscripten)magi_1.2.4.tgz(r-4.3-emscripten)
magi.pdf |magi.html
magi/json (API)

# Install 'magi' in R:
install.packages('magi', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Uses libs:
  • openblas– Optimized BLAS
  • c++– GNU Standard C++ Library v3
Datasets:
  • FNdat - Dataset of noisy observations from the FitzHugh-Nagumo (FN) equations

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

openblascpp

3.67 score 47 scripts 232 downloads 23 exports 12 dependencies

Last updated 7 months agofrom:137fd1f7ba. Checks:2 OK. Indexed: no.

TargetResultLatest binary
Doc / VignettesOKJan 21 2025
R-4.5-linux-x86_64OKJan 21 2025

Exports:calCovfnmodelDthetafnmodelDxfnmodelODEgpcovgpmeangpsmoothinggpsmoothllikhes1logmodelDthetahes1logmodelDxhes1logmodelODEhes1modelDthetahes1modelDxhes1modelODEis.magioutputmagioutputMagiPosteriorMagiSolverptransmodelDthetaptransmodelDxptransmodelODEsetDiscretizationtestDynamicalModel

Dependencies:BHclideSolvegluegridBasegridExtragtablelifecycleRcppRcppArmadillorlangroptim

magi-vignette

Rendered frommagi-vignette.Rmdusingknitr::rmarkdownon Jan 21 2025.

Last update: 2024-05-06
Started: 2021-07-27