Package: magi 1.2.4
magi: MAnifold-Constrained Gaussian Process Inference
Provides fast and accurate inference for the parameter estimation problem in Ordinary Differential Equations, including the case when there are unobserved system components. Implements the MAGI method (MAnifold-constrained Gaussian process Inference) of Yang, Wong, and Kou (2021) <doi:10.1073/pnas.2020397118>. A user guide is provided by the accompanying software paper Wong, Yang, and Kou (2024) <doi:10.18637/jss.v109.i04>.
Authors:
magi_1.2.4.tar.gz
magi_1.2.4.tar.gz(r-4.5-noble)magi_1.2.4.tar.gz(r-4.4-noble)
magi_1.2.4.tgz(r-4.4-emscripten)magi_1.2.4.tgz(r-4.3-emscripten)
magi.pdf |magi.html✨
magi/json (API)
# Install 'magi' in R: |
install.packages('magi', repos = 'https://cloud.r-project.org') |
- FNdat - Dataset of noisy observations from the FitzHugh-Nagumo (FN) equations
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 9 months agofrom:137fd1f7ba. Checks:3 OK. Indexed: no.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Mar 22 2025 |
R-4.5-linux-x86_64 | OK | Mar 22 2025 |
R-4.4-linux-x86_64 | OK | Mar 22 2025 |
Exports:calCovfnmodelDthetafnmodelDxfnmodelODEgpcovgpmeangpsmoothinggpsmoothllikhes1logmodelDthetahes1logmodelDxhes1logmodelODEhes1modelDthetahes1modelDxhes1modelODEis.magioutputmagioutputMagiPosteriorMagiSolverptransmodelDthetaptransmodelDxptransmodelODEsetDiscretizationtestDynamicalModel
Dependencies:BHclideSolvegluegridBasegridExtragtablelifecycleRcppRcppArmadillorlangroptim
Citation
To cite magi in publications use:
Wong SWK, Yang S, Kou SC (2024). “magi: A Package for Inference of Dynamic Systems from Noisy and Sparse Data via Manifold-Constrained Gaussian Processes.” Journal of Statistical Software, 109(4), 1–47. doi:10.18637/jss.v109.i04.
Corresponding BibTeX entry:
@Article{, title = {{magi}: A Package for Inference of Dynamic Systems from Noisy and Sparse Data via Manifold-Constrained {G}aussian Processes}, author = {Samuel W. K. Wong and Shihao Yang and S. C. Kou}, journal = {Journal of Statistical Software}, year = {2024}, volume = {109}, number = {4}, pages = {1--47}, doi = {10.18637/jss.v109.i04}, }
Readme and manuals
The current R version of MAGI is now available as a package on CRAN, and may be installed via
install.packages("magi")
Please see https://cran.r-project.org/package=magi for the full documentation and vignette.