Package: lvmcomp 1.2

Siliang Zhang

lvmcomp: Stochastic EM Algorithms for Latent Variable Models with a High-Dimensional Latent Space

Provides stochastic EM algorithms for latent variable models with a high-dimensional latent space. So far, we provide functions for confirmatory item factor analysis based on the multidimensional two parameter logistic (M2PL) model and the generalized multidimensional partial credit model. These functions scale well for problems with many latent traits (e.g., thirty or even more) and are virtually tuning-free. The computation is facilitated by multiprocessing 'OpenMP' API. For more information, please refer to: Zhang, S., Chen, Y., & Liu, Y. (2018). An Improved Stochastic EM Algorithm for Large-scale Full-information Item Factor Analysis. British Journal of Mathematical and Statistical Psychology. <doi:10.1111/bmsp.12153>.

Authors:Siliang Zhang [aut, cre], Yunxiao Chen [aut], Jorge Nocedal [cph], Naoaki Okazaki [cph]

lvmcomp_1.2.tar.gz
lvmcomp_1.2.tar.gz(r-4.5-noble)lvmcomp_1.2.tar.gz(r-4.4-noble)
lvmcomp_1.2.tgz(r-4.4-emscripten)lvmcomp_1.2.tgz(r-4.3-emscripten)
lvmcomp.pdf |lvmcomp.html
lvmcomp/json (API)

# Install 'lvmcomp' in R:
install.packages('lvmcomp', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/slzhang-fd/lvmcomp/issues

Uses libs:
  • openblas– Optimized BLAS
  • c++– GNU Standard C++ Library v3
  • openmp– GCC OpenMP (GOMP) support library
Datasets:
  • data_sim_mirt - Simulated dataset for multivariate item response theory model.
  • data_sim_pcirt - Simulated dataset for generalized partial credit model.

openblascppopenmp

1.00 score 2 scripts 121 downloads 2 exports 4 dependencies

Last updated 6 years agofrom:308db72118. Checks:OK: 1 NOTE: 1. Indexed: no.

TargetResultDate
Doc / VignettesOKNov 25 2024
R-4.5-linux-x86_64NOTENov 25 2024

Exports:StEM_mirtStEM_pcirt

Dependencies:codalatticeRcppRcppArmadillo