Package: lvmcomp 1.2
lvmcomp: Stochastic EM Algorithms for Latent Variable Models with a High-Dimensional Latent Space
Provides stochastic EM algorithms for latent variable models with a high-dimensional latent space. So far, we provide functions for confirmatory item factor analysis based on the multidimensional two parameter logistic (M2PL) model and the generalized multidimensional partial credit model. These functions scale well for problems with many latent traits (e.g., thirty or even more) and are virtually tuning-free. The computation is facilitated by multiprocessing 'OpenMP' API. For more information, please refer to: Zhang, S., Chen, Y., & Liu, Y. (2018). An Improved Stochastic EM Algorithm for Large-scale Full-information Item Factor Analysis. British Journal of Mathematical and Statistical Psychology. <doi:10.1111/bmsp.12153>.
Authors:
lvmcomp_1.2.tar.gz
lvmcomp_1.2.tar.gz(r-4.5-noble)lvmcomp_1.2.tar.gz(r-4.4-noble)
lvmcomp_1.2.tgz(r-4.4-emscripten)lvmcomp_1.2.tgz(r-4.3-emscripten)
lvmcomp.pdf |lvmcomp.html✨
lvmcomp/json (API)
# Install 'lvmcomp' in R: |
install.packages('lvmcomp', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/slzhang-fd/lvmcomp/issues
- data_sim_mirt - Simulated dataset for multivariate item response theory model.
- data_sim_pcirt - Simulated dataset for generalized partial credit model.
Last updated 6 years agofrom:308db72118. Checks:OK: 1 NOTE: 1. Indexed: no.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 25 2024 |
R-4.5-linux-x86_64 | NOTE | Nov 25 2024 |
Exports:StEM_mirtStEM_pcirt
Dependencies:codalatticeRcppRcppArmadillo