Package: lmls 0.1.1

Hannes Riebl

lmls: Gaussian Location-Scale Regression

The Gaussian location-scale regression model is a multi-predictor model with explanatory variables for the mean (= location) and the standard deviation (= scale) of a response variable. This package implements maximum likelihood and Markov chain Monte Carlo (MCMC) inference (using algorithms from Girolami and Calderhead (2011) <doi:10.1111/j.1467-9868.2010.00765.x> and Nesterov (2009) <doi:10.1007/s10107-007-0149-x>), a parametric bootstrap algorithm, and diagnostic plots for the model class.

Authors:Hannes Riebl [aut, cre]

lmls_0.1.1.tar.gz
lmls_0.1.1.tar.gz(r-4.5-noble)lmls_0.1.1.tar.gz(r-4.4-noble)
lmls_0.1.1.tgz(r-4.4-emscripten)lmls_0.1.1.tgz(r-4.3-emscripten)
lmls.pdf |lmls.html
lmls/json (API)
NEWS

# Install 'lmls' in R:
install.packages('lmls', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/hriebl/lmls/issues

Datasets:
  • abdom - Abdominal circumference data

2.93 score 17 scripts 252 downloads 5 exports 1 dependencies

Last updated 5 days agofrom:2461c44a27. Checks:OK: 1 WARNING: 1. Indexed: no.

TargetResultDate
Doc / VignettesOKNov 25 2024
R-4.5-linuxWARNINGNov 25 2024

Exports:bootglancelmlsmcmctidy

Dependencies:generics

Location-Scale Regression and the lmls Package

Rendered fromlmls.Rmdusingknitr::rmarkdownon Nov 25 2024.

Last update: 2024-11-20
Started: 2022-01-18