Package: lmSubsets 0.5-2

Marc Hofmann

lmSubsets: Exact Variable-Subset Selection in Linear Regression

Exact and approximation algorithms for variable-subset selection in ordinary linear regression models. Either compute all submodels with the lowest residual sum of squares, or determine the single-best submodel according to a pre-determined statistical criterion. Hofmann et al. (2020) <doi:10.18637/jss.v093.i03>.

Authors:Marc Hofmann [aut, cre], Cristian Gatu [aut], Erricos J. Kontoghiorghes [aut], Ana Colubi [aut], Achim Zeileis [aut], Martin Moene [cph], Microsoft Corporation [cph], Free Software Foundation, Inc. [cph]

lmSubsets_0.5-2.tar.gz
lmSubsets_0.5-2.tar.gz(r-4.5-noble)lmSubsets_0.5-2.tar.gz(r-4.4-noble)
lmSubsets_0.5-2.tgz(r-4.4-emscripten)lmSubsets_0.5-2.tgz(r-4.3-emscripten)
lmSubsets.pdf |lmSubsets.html
lmSubsets/json (API)

# Install 'lmSubsets' in R:
install.packages('lmSubsets', repos = 'https://cloud.r-project.org')

Bug tracker:https://github.com/marc-hofmann/lmsubsets.r/issues0 issues

Uses libs:
  • openblas– Optimized BLAS
  • c++– GNU Standard C++ Library v3
Datasets:
  • AirPollution - Air pollution and mortality
  • IbkTemperature - Temperature observations and numerical weather predictions for Innsbruck

On CRAN:

Conda:

openblascpp

2.30 score 290 downloads 2 mentions 6 exports 0 dependencies

Last updated 4 years agofrom:6fd1894f47. Checks:1 ERROR, 2 WARNING. Indexed: no.

TargetResultLatest binary
Doc / VignettesFAILMar 20 2025
R-4.5-linux-x86_64WARNINGMar 20 2025
R-4.4-linux-x86_64WARNINGMar 20 2025

Exports:lmSelectlmSelect_fitlmSubsetslmSubsets_fitmodel_responserefit

Dependencies:

lmSubsets: Exact Variable-Subset Selection in Linear Regression for R

Rendered fromlmSubsets.Rnwusingutils::Sweaveon Mar 20 2025.

Last update: 2020-04-28
Started: 2019-03-07

Citation

To cite package 'lmSubsets' in publications use:

Hofmann M, Gatu C, Kontoghiorghes E, Colubi A, Zeileis A (2021). lmSubsets: Exact Variable-Subset Selection in Linear Regression. R package version 0.5-2, https://CRAN.R-project.org/package=lmSubsets.

Hofmann M, Gatu C, Kontoghiorghes EJ, Colubi A, Zeileis A (2020). “lmSubsets: Exact Variable-Subset Selection in Linear Regression for R.” Journal of Statistical Software, 93(3), 1–21. doi:10.18637/jss.v093.i03.

Hofmann M, Gatu C, Kontoghiorghes EJ (2007). “Efficient algorithms for computing the best subset regression models for large-scale problems.” Computational Statistics & Data Analysis, 52, 16-29. doi:10.1016/j.csda.2007.03.017.

Gatu C, Kontoghiorghes EJ (2006). “Branch-and-bound algorithms for computing the best subset regression models.” Journal of Computational and Graphical Statistics, 15, 139-156. doi:10.1198/106186006x100290.

Hofmann M (2009). Algorithms for statistical model selection and robust estimation. Ph.D. thesis, University of Neuchatel, Switzerland. Supervisor: Erricos J. Kontoghiorghes.

Corresponding BibTeX entries:

  @Manual{,
    title = {{lmSubsets}: Exact Variable-Subset Selection in Linear
      Regression},
    author = {Marc Hofmann and Cristian Gatu and Erricos J.
      Kontoghiorghes and Ana Colubi and Achim Zeileis},
    year = {2021},
    note = {R package version 0.5-2},
    url = {https://CRAN.R-project.org/package=lmSubsets},
  }
  @Article{,
    title = {{lmSubsets}: Exact Variable-Subset Selection in Linear
      Regression for {R}},
    author = {Marc Hofmann and Cristian Gatu and Erricos J.
      Kontoghiorghes and Ana Colubi and Achim Zeileis},
    journal = {Journal of Statistical Software},
    year = {2020},
    volume = {93},
    number = {3},
    pages = {1--21},
    doi = {10.18637/jss.v093.i03},
  }
  @Article{,
    title = {Efficient algorithms for computing the best subset
      regression models for large-scale problems},
    author = {Marc Hofmann and Cristian Gatu and Erricos J.
      Kontoghiorghes},
    journal = {Computational Statistics & Data Analysis},
    year = {2007},
    volume = {52},
    pages = {16-29},
    doi = {10.1016/j.csda.2007.03.017},
  }
  @Article{,
    title = {Branch-and-bound algorithms for computing the best subset
      regression models},
    author = {Cristian Gatu and Erricos J. Kontoghiorghes},
    journal = {Journal of Computational and Graphical Statistics},
    year = {2006},
    volume = {15},
    pages = {139-156},
    doi = {10.1198/106186006x100290},
  }
  @PhdThesis{,
    title = {Algorithms for statistical model selection and robust
      estimation},
    author = {Marc Hofmann},
    school = {University of Neuchatel, Switzerland},
    year = {2009},
    note = {Supervisor: Erricos J. Kontoghiorghes},
  }

Readme and manuals

Help Manual

Help pageTopics
Package 'lmSubsets'lmSubsets-package
Extract AIC values from a subset regressionAIC.lmSelect AIC.lmSubsets
Air pollution and mortalityAirPollution
Extract BIC values from a subset regressionBIC.lmSelect BIC.lmSubsets
Extract the ceofficients from a subset regressioncoef.lmSelect coef.lmSubsets
Extract the deviance from a subset regressiondeviance.lmSelect deviance.lmSubsets
Extract the fitted values from a subset regressionfitted.lmSelect fitted.lmSubsets
Extract a formula from a subset regressionformula.lmSelect formula.lmSubsets
Temperature observations and numerical weather predictions for InnsbruckIbkTemperature
Heatmap of a subset regressionimage.lmSelect image.lmSubsets
Best-subset regressionlmSelect lmSelect.default print.lmSelect
Best-subset regressionlmSelect_fit
Best-subset regressionlmSelect.lmSubsets
Best-subset regressionlmSelect.matrix
All-subsets regressionlmSubsets lmSubsets.default print.lmSubsets
All-subsets regressionlmSubsets_fit
All-subsets regressionlmSubsets.matrix
Extract the log-likelihood from a subset regressionlogLik.lmSelect logLik.lmSubsets
Model responsemodel_response model_response.default
Extract the model response from a subset regressionmodel_response.lmSelect model_response.lmSubsets
Extract the model frame from a subset regressionmodel.frame.lmSelect model.frame.lmSubsets
Extract a model matrix from a subset regressionmodel.matrix.lmSelect model.matrix.lmSubsets
Plot a subset regressionplot.lmSelect plot.lmSubsets
Refitting modelsrefit
Refit a subset regressionrefit.lmSelect refit.lmSubsets
Extract the residuals from all-subsets regressionresiduals.lmSelect residuals.lmSubsets
Extract the residual standard deviation from a subset regressionsigma.lmSelect sigma.lmSubsets
Summarize a subset regressionprint.summary.lmSelect print.summary.lmSubsets summary.lmSelect summary.lmSubsets
Extract variable names from a subset regressionvariable.names.lmSelect variable.names.lmSubsets
Extract the variance-covariance matrix from a subset regressionvcov.lmSelect vcov.lmSubsets