Package: kendallknight 0.6.0
kendallknight: Efficient Implementation of Kendall's Correlation Coefficient Computation
The computational complexity of the implemented algorithm for Kendall's correlation is O(n log(n)), which is faster than the base R implementation with a computational complexity of O(n^2). For small vectors (i.e., less than 100 observations), the time difference is negligible. However, for larger vectors, the speed difference can be substantial and the numerical difference is minimal. The references are Knight (1966) <doi:10.2307/2282833>, Abrevaya (1999) <doi:10.1016/S0165-1765(98)00255-9>, Christensen (2005) <doi:10.1007/BF02736122> and Emara (2024) <https://learningcpp.org/>. This implementation is described in Vargas Sepulveda (2024) <doi:10.48550/arXiv.2408.09618>.
Authors:
kendallknight_0.6.0.tar.gz
kendallknight_0.6.0.tar.gz(r-4.5-noble)kendallknight_0.6.0.tar.gz(r-4.4-noble)
kendallknight_0.6.0.tgz(r-4.4-emscripten)kendallknight_0.6.0.tgz(r-4.3-emscripten)
kendallknight.pdf |kendallknight.html✨
kendallknight/json (API)
NEWS
# Install 'kendallknight' in R: |
install.packages('kendallknight', repos = 'https://cloud.r-project.org') |
Bug tracker:https://github.com/pachadotdev/kendallknight/issues0 issues
Pkgdown site:https://pacha.dev
- cigarettes - Life expectancy and cigarettes per day
Last updated 1 months agofrom:f3878eb0a2. Checks:3 OK. Indexed: no.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Mar 23 2025 |
R-4.5-linux-x86_64 | OK | Mar 23 2025 |
R-4.4-linux-x86_64 | OK | Mar 23 2025 |
Exports:kendall_corkendall_cor_test
Dependencies:cpp11
Citation
To cite package ‘kendallknight’ in publications use:
Vargas Sepulveda M (2025). kendallknight: Efficient Implementation of Kendall's Correlation Coefficient Computation. R package version 0.6.0, https://CRAN.R-project.org/package=kendallknight.
Corresponding BibTeX entry:
@Manual{, title = {kendallknight: Efficient Implementation of Kendall's Correlation Coefficient Computation}, author = {Mauricio {Vargas Sepulveda}}, year = {2025}, note = {R package version 0.6.0}, url = {https://CRAN.R-project.org/package=kendallknight}, }
Readme and manuals
kendallknight

About
tldr; This package implements a different algorithm from the one implemented in base R, and it reduces the complexity of the Kendall’s correlation coefficient from O(n^2) to O(n log n) resulting in a runtime of nano seconds or minutes instead of minutes or hours. This package is written in C++ and uses cpp11 to export the functions to R. See the vignette for the mathematical details.
If this software is useful to you, please consider donating on Buy Me A
Coffee. All donations will be used to
continue improving kendallknight
.
Installation
You can install the released version of kendallknight from CRAN with:
install.packages("kendallknight")
You can install the development version of kendallknight like so:
remotes::install_github("pachadotdev/kendallknight")
Examples
See the documentation and vignette: https://pacha.dev/kendallknight/.
Code of Conduct
Please note that the kendallknight project is released with a Contributor Code of Conduct. By contributing to this project, you agree to abide by its terms.
Help Manual
Help page | Topics |
---|---|
kendallknight: Efficient Implementation of Kendall's Correlation Coefficient Computation | kendallknight-package kendallknight |
Life expectancy and cigarettes per day | cigarettes |
Kendall Correlation | kendall_cor |
Kendall Correlation Test | kendall_cor_test |