Package: intsurv 0.2.2

Wenjie Wang

intsurv: Integrative Survival Modeling

Contains implementations of integrative survival analysis routines, including regular Cox cure rate model proposed by Kuk and Chen (1992) <doi:10.1093/biomet/79.3.531> via an EM algorithm proposed by Sy and Taylor (2000) <doi:10.1111/j.0006-341X.2000.00227.x>, regularized Cox cure rate model with elastic net penalty following Masud et al. (2018) <doi:10.1177/0962280216677748>, and Zou and Hastie (2005) <doi:10.1111/j.1467-9868.2005.00503.x>, and weighted concordance index for cure models proposed by Asano and Hirakawa (2017) <doi:10.1080/10543406.2017.1293082>.

Authors:Wenjie Wang [aut, cre], Kun Chen [ctb], Jun Yan [ctb]

intsurv_0.2.2.tar.gz
intsurv_0.2.2.tar.gz(r-4.5-noble)intsurv_0.2.2.tar.gz(r-4.4-noble)
intsurv_0.2.2.tgz(r-4.4-emscripten)intsurv_0.2.2.tgz(r-4.3-emscripten)
intsurv.pdf |intsurv.html
intsurv/json (API)
NEWS

# Install 'intsurv' in R:
install.packages('intsurv', repos = 'https://cloud.r-project.org')

Bug tracker:https://github.com/wenjie2wang/intsurv/issues0 issues

Pkgdown site:https://wwenjie.org

Uses libs:
  • openblas– Optimized BLAS
  • c++– GNU Standard C++ Library v3
  • openmp– GCC OpenMP (GOMP) support library

On CRAN:

Conda:

openblascppopenmp

1.70 score 195 downloads 15 exports 2 dependencies

Last updated 4 years agofrom:7f2eb1118f. Checks:1 OK, 2 NOTE. Indexed: no.

TargetResultLatest binary
Doc / VignettesOKMar 28 2025
R-4.5-linux-x86_64NOTEMar 28 2025
R-4.4-linux-x86_64NOTEMar 28 2025

Exports:bootSecIndexcoefcox_curecox_cure_netcox_cure_net.fitcox_cure.fitiCoxphiCoxph.controliCoxph.startshowsimData4curesimData4iCoxphsummarySurvi

Dependencies:RcppRcppArmadillo

Citation

To cite intsurv in publications use:

Wang W, Chen K, Yan J (2021). intsurv: Integrative Survival Models. R package version 0.2.2, https://github.com/wenjie2wang/intsurv.

Wang W, Aseltine R, Chen K, Yan J (2020). “Integrative Survival Analysis with Uncertain Event Times in Application to a Suicide Risk Study.” Annals of Applied Statistics, 14(1), 51–73.

Wang W, Luo C, Aseltine R, Wang F, Yan J, Chen K (2020). “Suicide Risk Modeling with Uncertain Diagnostic Records.” arXiv preprint arXiv:2009.02597.

Corresponding BibTeX entries:

  @Manual{intsurv-package,
    title = {{intsurv}: {I}ntegrative Survival Models},
    author = {Wenjie Wang and Kun Chen and Jun Yan},
    year = {2021},
    url = {https://github.com/wenjie2wang/intsurv},
    note = {{R} package version 0.2.2},
  }
  @Article{wang2020integrative,
    title = {Integrative Survival Analysis with Uncertain Event Times
      in Application to a Suicide Risk Study},
    author = {Wenjie Wang and Robert Aseltine and Kun Chen and Jun
      Yan},
    journal = {Annals of Applied Statistics},
    volume = {14},
    number = {1},
    pages = {51--73},
    year = {2020},
  }
  @Misc{wang2019suicide,
    title = {Suicide Risk Modeling with Uncertain Diagnostic Records},
    author = {Wenjie Wang and Chongliang Luo and Robert Aseltine and
      Fei Wang and Jun Yan and Kun Chen},
    note = {arXiv preprint arXiv:2009.02597},
    year = {2020},
  }

Readme and manuals

intsurv

The R package intsurv contains implementations of

  • integrative Cox model with uncertain event times (Wang et al., 2020)
  • Cox cure rate model with uncertain event status (Wang et al., 2020)

and other survival analysis routines, including

  • regular Cox cure rate model
  • regularized Cox cure rate model with elastic net penalty
  • weighted concordance index

Installation

You may install the latest released version on CRAN by

install.packages("intsurv")

Get Started

Examples are provided for the main functions for model-fitting in the package. One may get started from those examples and the function documentation.

library(intsurv)
?iCoxph # integrative Cox model
?cox_cure # Cox cure rate model
?cox_cure_net # regularized Cox cure rate model

Development

If the version under development is able to pass the automated package checks, one may consider installing it with the help of remotes by

if (! require(remotes)) install.packages("remotes")
remotes::install_github("wenjie2wang/intsurv")

References

  • Wang, W., Aseltine, R. H., Chen, K., & Yan, J. (2020). Integrative Survival Analysis with Uncertain Event Times in Application to A Suicide Risk Study. Annals of Applied Statistics, 14(1), 51-73.
  • Wang, W., Luo, C., Aseltine, R. H., Wang, F., Yan, J., & Chen, K. (2020). Suicide Risk Modeling with Uncertain Diagnostic Records. arXiv preprint arXiv:2009.02597.

Help Manual

Help pageTopics
Integrative Survival Modelingintsurv-package
Bayesian Information Criterion (BIC)BIC.cox_cure BIC.cox_cure_uncer
Bayesian Information Criterion (BIC)BIC.cox_cure_net BIC.cox_cure_net_uncer
Standard Error Estimates through BootstrapbootSe
Concordance IndexcIndex
Estimated Covariates Coefficientscoef,iCoxph-method coef.iCoxph
Estimated Covariate Coefficientscoef.cox_cure coef.cox_cure_uncer
Estimated Covariate Coefficientscoef.cox_cure_net coef.cox_cure_net_uncer
Cox Cure Rate Modelcox_cure cox_cure.fit
Regularized Cox Cure Rate Modelcox_cure_net cox_cure_net.fit
Integrative Cox Model for Uncertain Event TimesiCoxph
An S4 Class to Represent a Fitted Integrative Cox ModeliCoxph-class
Auxiliary for Controlling iCoxph FittingiCoxph.control
Auxiliary for Starting iCoxph FittingiCoxph.start
Show Methodsshow,iCoxph-method show,summary.iCoxph-method show-method
Simulate Data from Cox Cure Model with Uncertain Event StatussimData4cure
Simulated Survival Data with Uncertain RecordssimData4iCoxph
Summary of a Fitted Modelsummary,iCoxph-method summary.iCoxph
Summary of a Fitted Modelsummary.cox_cure summary.cox_cure_uncer
An S4 Class to Represent Summary of a fitted integrative Cox modelsummary.iCoxph-class
Formula Response for Survival Data With Uncertain Event TimesSurvi
An S4 Class Representing Formula ResponseSurvi-class