Package: intRinsic 1.1.0

Francesco Denti

intRinsic: Likelihood-Based Intrinsic Dimension Estimators

Provides functions to estimate the intrinsic dimension of a dataset via likelihood-based approaches. Specifically, the package implements the 'TWO-NN' and 'Gride' estimators and the 'Hidalgo' Bayesian mixture model. In addition, the first reference contains an extended vignette on the usage of the 'TWO-NN' and 'Hidalgo' models. References: Denti (2023, <doi:10.18637/jss.v106.i09>); Allegra et al. (2020, <doi:10.1038/s41598-020-72222-0>); Denti et al. (2022, <doi:10.1038/s41598-022-20991-1>); Facco et al. (2017, <doi:10.1038/s41598-017-11873-y>); Santos-Fernandez et al. (2021, <doi:10.1038/s41598-022-20991-1>).

Authors:Francesco Denti [aut, cre, cph], Andrea Gilardi [aut]

intRinsic_1.1.0.tar.gz
intRinsic_1.1.0.tar.gz(r-4.5-noble)intRinsic_1.1.0.tar.gz(r-4.4-noble)
intRinsic_1.1.0.tgz(r-4.4-emscripten)intRinsic_1.1.0.tgz(r-4.3-emscripten)
intRinsic.pdf |intRinsic.html
intRinsic/json (API)
NEWS

# Install 'intRinsic' in R:
install.packages('intRinsic', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/fradenti/intrinsic/issues

Uses libs:
  • c++– GNU Standard C++ Library v3
  • openmp– GCC OpenMP (GOMP) support library

2.00 score 10 scripts 255 downloads 17 exports 45 dependencies

Last updated 3 months agofrom:d273595553. Checks:OK: 2. Indexed: no.

TargetResultDate
Doc / VignettesOKNov 12 2024
R-4.5-linux-x86_64OKNov 12 2024

Exports:autoplotclusteringcompute_muscredible_intervalsdgeragridegride_evolutionHidalgoid_by_classinitial_valuesposterior_meansposterior_mediansrgeraSwissrolltwonntwonn_decimatedtwonn_decimation

Dependencies:clicolorspacedplyrevaluatefansifarverFNNgenericsggplot2gluegtablehighrisobandknitrlabelinglatex2explatticelifecyclemagrittrMASSMatrixmgcvmunsellnlmepillarpkgconfigplyrR6RColorBrewerRcppRcppArmadilloreshape2rlangsalsoscalesstringistringrtibbletidyselectutf8vctrsviridisLitewithrxfunyaml

Readme and manuals

Help Manual

Help pageTopics
Plot the simulated MCMC chains for the Bayesian 'Gride'autoplot.gride_bayes
Plot the evolution of 'Gride' estimatesautoplot.gride_evolution
Plot the simulated bootstrap sample for the MLE 'Gride'autoplot.gride_mle
Plot the output of the 'Hidalgo' functionautoplot.Hidalgo
Plot the output of the 'TWO-NN' model estimated via the Bayesian approachautoplot.twonn_bayes
Plot the output of the 'TWO-NN' model estimated via least squaresautoplot.twonn_linfit
Plot the output of the 'TWO-NN' model estimated via the Maximum Likelihood approachautoplot.twonn_mle
Auxiliary functions for the 'Hidalgo' modelauxHidalgo credible_intervals initial_values posterior_means posterior_medians
Posterior similarity matrix and partition estimationclustering plot.hidalgo_psm print.hidalgo_psm
Compute the ratio statistics needed for the intrinsic dimension estimationcompute_mus plot.mus print.mus print.mus_Nq
The Generalized Ratio distributiondgera generalized_ratios_distribution rgera
'Gride': the Generalized Ratios ID Estimatorgride plot.gride_bayes plot.gride_mle print.gride_bayes print.gride_mle print.summary.gride_bayes print.summary.gride_mle summary.gride_bayes summary.gride_mle
'Gride' evolution based on Maximum Likelihood Estimationgride_evolution plot.gride_evolution print.gride_evolution
Fit the 'Hidalgo' modelHidalgo plot.Hidalgo print.Hidalgo print.summary.Hidalgo summary.Hidalgo
Stratification of the 'id' by an external categorical variableid_by_class print.hidalgo_class
Generates a noise-free Swiss roll datasetSwissroll
'TWO-NN' estimatorplot.twonn_bayes plot.twonn_linfit plot.twonn_mle print.summary.twonn_bayes print.summary.twonn_linfit print.summary.twonn_mle print.twonn_bayes print.twonn_linfit print.twonn_mle summary.twonn_bayes summary.twonn_linfit summary.twonn_mle twonn
Estimate the decimated 'TWO-NN' evolution with halving steps or vector of proportionstwonn_decimated
Estimate the decimated 'TWO-NN' evolution with halving steps or vector of proportionsplot.twonn_dec_by plot.twonn_dec_prop print.twonn_dec_by print.twonn_dec_prop twonn_decimation