Package: insight 1.1.0

Daniel Lüdecke

insight: Easy Access to Model Information for Various Model Objects

A tool to provide an easy, intuitive and consistent access to information contained in various R models, like model formulas, model terms, information about random effects, data that was used to fit the model or data from response variables. 'insight' mainly revolves around two types of functions: Functions that find (the names of) information, starting with 'find_', and functions that get the underlying data, starting with 'get_'. The package has a consistent syntax and works with many different model objects, where otherwise functions to access these information are missing.

Authors:Daniel Lüdecke [aut, cre], Dominique Makowski [aut, ctb], Indrajeet Patil [aut, ctb], Philip Waggoner [aut, ctb], Mattan S. Ben-Shachar [aut, ctb], Brenton M. Wiernik [aut, ctb], Vincent Arel-Bundock [aut, ctb], Etienne Bacher [aut, ctb], Alex Hayes [rev], Grant McDermott [ctb], Rémi Thériault [ctb], Alex Reinhart [ctb]

insight_1.1.0.tar.gz
insight_1.1.0.tar.gz(r-4.5-noble)insight_1.1.0.tar.gz(r-4.4-noble)
insight_1.1.0.tgz(r-4.4-emscripten)insight_1.1.0.tgz(r-4.3-emscripten)
insight.pdf |insight.html
insight/json (API)
NEWS

# Install 'insight' in R:
install.packages('insight', repos = 'https://cloud.r-project.org')

Bug tracker:https://github.com/easystats/insight/issues

Pkgdown site:https://easystats.github.io

Datasets:
  • fish - Sample data set

On CRAN:

Conda:

10.05 score 214 packages 175k downloads 6 mentions 122 exports 0 dependencies

Last updated 1 months agofrom:6a3a79576c. Checks:3 OK. Indexed: no.

TargetResultLatest binary
Doc / VignettesOKApr 01 2025
R-4.5-linuxOKApr 01 2025
R-4.4-linuxOKApr 01 2025

Exports:all_models_equalall_models_same_classapply_table_themebroom_columnscheck_if_installedclean_namesclean_parameterscolor_ifcolor_textcolor_themecolour_ifcolour_textcompact_charactercompact_listdisplaydownload_modeleasystats_columnsellipsis_infoexport_tablefind_algorithmfind_formulafind_interactionsfind_offsetfind_parametersfind_predictorsfind_randomfind_random_slopesfind_responsefind_smoothfind_statisticfind_termsfind_transformationfind_variablesfind_weightsformat_alertformat_bfformat_capitalizeformat_ciformat_errorformat_messageformat_numberformat_pformat_pdformat_percentformat_ropeformat_stringformat_tableformat_valueformat_warningformula_okget_auxiliaryget_callget_correlation_slope_interceptget_correlation_slopesget_dataget_datagridget_devianceget_dfget_dispersionget_familyget_interceptget_loglikelihoodget_loglikelihood_adjustmentget_modelmatrixget_parametersget_predictedget_predicted_ciget_predictorsget_priorsget_randomget_residualsget_responseget_sigmaget_statisticget_transformationget_varcovget_varianceget_variance_dispersionget_variance_distributionget_variance_fixedget_variance_interceptget_variance_randomget_variance_residualget_variance_slopeget_weightshas_intercepthas_single_valueis_convergedis_empty_objectis_gam_modelis_mixed_modelis_modelis_model_supportedis_multivariateis_nested_modelsis_nullmodelis_regression_modellink_functionlink_inverseloglikelihoodmodel_infomodel_namen_grouplevelsn_obsn_parametersn_uniquenull_modelobject_has_namesobject_has_rownamesprint_colorprint_colourprint_htmlprint_mdprint_parameterssafe_deparsesafe_deparse_symbolstandardize_column_orderstandardize_namessupported_modelstext_remove_backtickstrim_wsvalidate_argument

Dependencies:

Exporting tables with captions and footers

Rendered fromexport.Rmdusingknitr::rmarkdownon Apr 01 2025.

Last update: 2024-11-26
Started: 2022-01-07

Formatting, printing and exporting tables

Rendered fromdisplay.Rmdusingknitr::rmarkdownon Apr 01 2025.

Last update: 2023-10-12
Started: 2021-02-15

Getting Started with Accessing Model Information

Rendered frominsight.Rmdusingknitr::rmarkdownon Apr 01 2025.

Last update: 2024-06-05
Started: 2019-07-01

Citation

Lüdecke D, Waggoner P, Makowski D (2019). “insight: A Unified Interface to Access Information from Model Objects in R.” Journal of Open Source Software, 4(38), 1412. doi:10.21105/joss.01412.

Corresponding BibTeX entry:

  @Article{,
    title = {{insight}: A Unified Interface to Access Information from
      Model Objects in {R}.},
    volume = {4},
    doi = {10.21105/joss.01412},
    number = {38},
    journal = {Journal of Open Source Software},
    author = {Daniel Lüdecke and Philip Waggoner and Dominique
      Makowski},
    year = {2019},
    pages = {1412},
  }

Readme and manuals

insight

Gain insight into your models!

When fitting any statistical model, there are many useful pieces of information that are simultaneously calculated and stored beyond coefficient estimates and general model fit statistics. Although there exist some generic functions to obtain model information and data, many package-specific modelling functions do not provide such methods to allow users to access such valuable information.

insight is an R-package that fills this important gap by providing a suite of functions to support almost any model (see a list of the many models supported below in the List of Supported Packages and Models section). The goal of insight, then, is to provide tools to provide easy, intuitive, and consistent access to information contained in model objects. These tools aid applied research in virtually any field who fit, diagnose, and present statistical models by streamlining access to every aspect of many model objects via consistent syntax and output.

Installation

CRAN_Status_Badge insight status badge codecov

The insight package is available on CRAN, while its latest development version is available on R-universe (from rOpenSci) or GitHub.

Type Source Command
Release CRAN install.packages("insight")
Development r-universe install.packages("insight", repos = "https://easystats.r-universe.dev")
Development GitHub remotes::install_github("easystats/insight")

Once you have downloaded the package, you can then load it using:

library("insight")

Tip

Instead of library(insight), use library(easystats). This will make all features of the easystats-ecosystem available.

To stay updated, use easystats::install_latest().

Documentation

Documentation Blog Features

Built with non-programmers in mind, insight offers a broad toolbox for making model and data information easily accessible. While insight offers many useful functions for working with and understanding model objects (discussed below), we suggest users start with model_info(), as this function provides a clean and consistent overview of model objects (e.g., functional form of the model, the model family, link function, number of observations, variables included in the specification, etc.). With a clear understanding of the model introduced, users are able to adapt other functions for more nuanced exploration of and interaction with virtually any model object.Please visit https://easystats.github.io/insight/ for documentation.

Definition of Model Components

The functions from insight address different components of a model. In an effort to avoid confusion about specific “targets” of each function, in this section we provide a short explanation of insight’s definitions of regression model components.

Data

The dataset used to fit the model.

Parameters

Values estimated or learned from data that capture the relationship between variables. In regression models, these are usually referred to as coefficients.

Response and Predictors
  • response: the outcome or response variable (dependent variable) of a regression model.
  • predictor: independent variables of (the fixed part of) a regression model. For mixed models, variables that are only in the random effects part (i.e. grouping factors) of the model are not returned as predictors by default. However, these can be included using additional arguments in the function call, treating predictors are “unique”. As such, if a variable appears as a fixed effect and a random slope, it is treated as one (the same) predictor.
Variables

Any unique variable names that appear in a regression model, e.g., response variable, predictors or random effects. A “variable” only relates to the unique occurence of a term, or the term name. For instance, the expression x + poly(x, 2) has only the variable x.

Terms

Terms themselves consist of variable and factor names separated by operators, or involve arithmetic expressions. For instance, the expression x + poly(x, 2) has one variable x, but two terms x and poly(x, 2).

Random Effects
  • random slopes: variables that are specified as random slopes in a mixed effects model.
  • random or grouping factors: variables that are specified as grouping variables in a mixed effects model.

Aren’t the predictors, terms and parameters the same thing?

In some cases, yes. But not in all cases. Find out more by clicking here to access the documentation.

Functions

The package revolves around two key prefixes: get_* and find_*. The get_* prefix extracts values (or data) associated with model-specific objects (e.g., parameters or variables), while the find_* prefix lists model-specific objects (e.g., priors or predictors). These are powerful families of functions allowing for great flexibility in use, whether at a high, descriptive level (find_*) or narrower level of statistical inspection and reporting (get_*).

In total, the insight package includes 16 core functions: get_data(), get_priors(), get_variance(), get_parameters(), get_predictors(), get_random(), get_response(), find_algorithm(), find_formula(), find_variables(), find_terms(), find_parameters(), find_predictors(), find_random(), find_response(), and model_info(). In all cases, users must supply at a minimum, the name of the model fit object. In several functions, there are additional arguments that allow for more targeted returns of model information. For example, the find_terms() function’s effects argument allows for the extraction of “fixed effects” terms, “random effects” terms, or by default, “all” terms in the model object. We point users to the package documentation or the complementary package website, https://easystats.github.io/insight/, for a detailed list of the arguments associated with each function as well as the returned values from each function.

Examples of Use Cases in R

We now would like to provide examples of use cases of the insight package. These examples probably do not cover typical real-world problems, but serve as illustration of the core idea of this package: The unified interface to access model information. insight should help both users and package developers in order to reduce the hassle with the many exceptions from various modelling packages when accessing model information.

Making Predictions at Specific Values of a Term of Interest

Say, the goal is to make predictions for a certain term, holding remaining co-variates constant. This is achieved by calling predict() and feeding the newdata-argument with the values of the term of interest as well as the “constant” values for remaining co-variates. The functions get_data() and find_predictors() are used to get this information, which then can be used in the call to predict().

In this example, we fit a simple linear model, but it could be replaced by (m)any other models, so this approach is “universal” and applies to many different model objects.

library(insight)
m <- lm(
  Sepal.Length ~ Species + Petal.Width + Sepal.Width,
  data = iris
)

dat <- get_data(m)
pred <- find_predictors(m, flatten = TRUE)

l <- lapply(pred, function(x) {
  if (is.numeric(dat[[x]])) {
    mean(dat[[x]])
  } else {
    unique(dat[[x]])
  }
})

names(l) <- pred
l <- as.data.frame(l)

cbind(l, predictions = predict(m, newdata = l))
#>      Species Petal.Width Sepal.Width predictions
#> 1     setosa         1.2         3.1         5.1
#> 2 versicolor         1.2         3.1         6.1
#> 3  virginica         1.2         3.1         6.3
Printing Model Coefficients

The next example should emphasize the possibilities to generalize functions to many different model objects using insight. The aim is simply to print coefficients in a complete, human readable sentence.

The first approach uses the functions that are available for some, but obviously not for all models, to access the information about model coefficients.

print_params <- function(model) {
  paste0(
    "My parameters are ",
    toString(row.names(summary(model)$coefficients)),
    ", thank you for your attention!"
  )
}

m1 <- lm(Sepal.Length ~ Petal.Width, data = iris)
print_params(m1)
#> [1] "My parameters are (Intercept), Petal.Width, thank you for your attention!"

# obviously, something is missing in the output
m2 <- mgcv::gam(Sepal.Length ~ Petal.Width + s(Petal.Length), data = iris)
print_params(m2)
#> [1] "My parameters are , thank you for your attention!"

As we can see, the function fails for gam-models. As the access to models depends on the type of the model in the R ecosystem, we would need to create specific functions for all models types. With insight, users can write a function without having to worry about the model type.

print_params <- function(model) {
  paste0(
    "My parameters are ",
    toString(insight::find_parameters(model, flatten = TRUE)),
    ", thank you for your attention!"
  )
}

m1 <- lm(Sepal.Length ~ Petal.Width, data = iris)
print_params(m1)
#> [1] "My parameters are (Intercept), Petal.Width, thank you for your attention!"

m2 <- mgcv::gam(Sepal.Length ~ Petal.Width + s(Petal.Length), data = iris)
print_params(m2)
#> [1] "My parameters are (Intercept), Petal.Width, s(Petal.Length), thank you for your attention!"

Contributing and Support

In case you want to file an issue or contribute in another way to the package, please follow this guide. For questions about the functionality, you may either contact us via email or also file an issue.

List of Supported Models by Class

Currently, about 239 model classes are supported.

supported_models()
#>   [1] "aareg"                   "afex_aov"               
#>   [3] "AKP"                     "Anova.mlm"              
#>   [5] "anova.rms"               "aov"                    
#>   [7] "aovlist"                 "Arima"                  
#>   [9] "asym"                    "averaging"              
#>  [11] "bamlss"                  "bamlss.frame"           
#>  [13] "bayesQR"                 "bayesx"                 
#>  [15] "BBmm"                    "BBreg"                  
#>  [17] "bcplm"                   "betamfx"                
#>  [19] "betaor"                  "betareg"                
#>  [21] "BFBayesFactor"           "bfsl"                   
#>  [23] "BGGM"                    "bife"                   
#>  [25] "bifeAPEs"                "bigglm"                 
#>  [27] "biglm"                   "blavaan"                
#>  [29] "blrm"                    "bracl"                  
#>  [31] "brglm"                   "brmsfit"                
#>  [33] "brmultinom"              "btergm"                 
#>  [35] "censReg"                 "cgam"                   
#>  [37] "cgamm"                   "cglm"                   
#>  [39] "clm"                     "clm2"                   
#>  [41] "clmm"                    "clmm2"                  
#>  [43] "clogit"                  "coeftest"               
#>  [45] "complmrob"               "confusionMatrix"        
#>  [47] "coxme"                   "coxph"                  
#>  [49] "coxph.penal"             "coxph_weightit"         
#>  [51] "coxr"                    "cpglm"                  
#>  [53] "cpglmm"                  "crch"                   
#>  [55] "crq"                     "crqs"                   
#>  [57] "crr"                     "dep.effect"             
#>  [59] "DirichletRegModel"       "draws"                  
#>  [61] "drc"                     "eglm"                   
#>  [63] "elm"                     "emmGrid"                
#>  [65] "epi.2by2"                "ergm"                   
#>  [67] "fdm"                     "feglm"                  
#>  [69] "feis"                    "felm"                   
#>  [71] "fitdistr"                "fixest"                 
#>  [73] "flac"                    "flexsurvreg"            
#>  [75] "flic"                    "gam"                    
#>  [77] "Gam"                     "gamlss"                 
#>  [79] "gamm"                    "gamm4"                  
#>  [81] "garch"                   "gbm"                    
#>  [83] "gee"                     "geeglm"                 
#>  [85] "ggcomparisons"           "glht"                   
#>  [87] "glimML"                  "glm"                    
#>  [89] "Glm"                     "glm_weightit"           
#>  [91] "glmerMod"                "glmgee"                 
#>  [93] "glmm"                    "glmmadmb"               
#>  [95] "glmmPQL"                 "glmmTMB"                
#>  [97] "glmrob"                  "glmRob"                 
#>  [99] "glmx"                    "gls"                    
#> [101] "gmnl"                    "hglm"                   
#> [103] "HLfit"                   "htest"                  
#> [105] "hurdle"                  "iv_robust"              
#> [107] "ivFixed"                 "ivprobit"               
#> [109] "ivreg"                   "lavaan"                 
#> [111] "lm"                      "lm_robust"              
#> [113] "lme"                     "lmerMod"                
#> [115] "lmerModLmerTest"         "lmodel2"                
#> [117] "lmrob"                   "lmRob"                  
#> [119] "logistf"                 "logitmfx"               
#> [121] "logitor"                 "logitr"                 
#> [123] "LORgee"                  "lqm"                    
#> [125] "lqmm"                    "lrm"                    
#> [127] "manova"                  "MANOVA"                 
#> [129] "marginaleffects"         "marginaleffects.summary"
#> [131] "margins"                 "maxLik"                 
#> [133] "mblogit"                 "mclogit"                
#> [135] "mcmc"                    "mcmc.list"              
#> [137] "MCMCglmm"                "mcp1"                   
#> [139] "mcp12"                   "mcp2"                   
#> [141] "med1way"                 "mediate"                
#> [143] "merMod"                  "merModList"             
#> [145] "meta_bma"                "meta_fixed"             
#> [147] "meta_random"             "metaplus"               
#> [149] "mhurdle"                 "mipo"                   
#> [151] "mira"                    "mixed"                  
#> [153] "MixMod"                  "mixor"                  
#> [155] "mjoint"                  "mle"                    
#> [157] "mle2"                    "mlm"                    
#> [159] "mlogit"                  "mmclogit"               
#> [161] "mmlogit"                 "mmrm"                   
#> [163] "mmrm_fit"                "mmrm_tmb"               
#> [165] "model_fit"               "multinom"               
#> [167] "multinom_weightit"       "mvord"                  
#> [169] "negbinirr"               "negbinmfx"              
#> [171] "nestedLogit"             "ols"                    
#> [173] "onesampb"                "oohbchoice"             
#> [175] "ordinal_weightit"        "orm"                    
#> [177] "pgmm"                    "phyloglm"               
#> [179] "phylolm"                 "plm"                    
#> [181] "PMCMR"                   "poissonirr"             
#> [183] "poissonmfx"              "polr"                   
#> [185] "probitmfx"               "psm"                    
#> [187] "Rchoice"                 "ridgelm"                
#> [189] "riskRegression"          "rjags"                  
#> [191] "rlm"                     "rlmerMod"               
#> [193] "RM"                      "rma"                    
#> [195] "rma.uni"                 "robmixglm"              
#> [197] "robtab"                  "rq"                     
#> [199] "rqs"                     "rqss"                   
#> [201] "rvar"                    "Sarlm"                  
#> [203] "scam"                    "selection"              
#> [205] "sem"                     "SemiParBIV"             
#> [207] "semLm"                   "semLme"                 
#> [209] "seqanova.svyglm"         "serp"                   
#> [211] "slm"                     "speedglm"               
#> [213] "speedlm"                 "stanfit"                
#> [215] "stanmvreg"               "stanreg"                
#> [217] "summary.lm"              "survfit"                
#> [219] "survreg"                 "svy_vglm"               
#> [221] "svy2lme"                 "svychisq"               
#> [223] "svyglm"                  "svyolr"                 
#> [225] "t1way"                   "tobit"                  
#> [227] "trimcibt"                "truncreg"               
#> [229] "vgam"                    "vglm"                   
#> [231] "wbgee"                   "wblm"                   
#> [233] "wbm"                     "wmcpAKP"                
#> [235] "yuen"                    "yuend"                  
#> [237] "zcpglm"                  "zeroinfl"               
#> [239] "zerotrunc"
  • Didn’t find a model? File an issue and request additional model-support in insight!

Citation

If this package helped you, please consider citing as follows:

Lüdecke D, Waggoner P, Makowski D. insight: A Unified Interface to Access Information from Model Objects in R. Journal of Open Source Software 2019;4:1412. doi: 10.21105/joss.01412

Code of Conduct

Please note that the insight project is released with a Contributor Code of Conduct. By contributing to this project, you agree to abide by its terms.

Help Manual

Help pageTopics
Checks if all objects are models of same classall_models_equal all_models_same_class
Data frame and Tables Pretty Formattingapply_table_theme export_table
Checking if needed package is installedcheck_if_installed
Get clean names of model termsclean_names clean_names.character
Get clean names of model parametersclean_parameters
Color-formatting for data columns based on conditioncolor_if colour_if
Remove empty strings from charactercompact_character
Remove empty elements from listscompact_list
Generic export of data frames into formatted tablesdisplay display.data.frame print_html print_html.data.frame print_md print_md.data.frame
Download circus modelsdownload_model
Easystats columnsbroom_columns easystats_columns
Gather information about objects in ellipsis (dot dot dot)ellipsis_info ellipsis_info.default
Find sampling algorithm and optimizersfind_algorithm
Find model formulafind_formula find_formula.default find_formula.nestedLogit formula_ok
Find interaction terms from modelsfind_interactions
Find possible offset terms in a modelfind_offset
Find names of model parametersfind_parameters find_parameters.default
Find model parameters from models with special componentsfind_parameters.averaging
Find names of model parameters from marginal effects modelsfind_parameters.betamfx
Find names of model parameters from Bayesian modelsfind_parameters.BGGM find_parameters.brmsfit
Find model parameters from estimated marginal means objectsfind_parameters.emmGrid
Find names of model parameters from generalized additive modelsfind_parameters.gam find_parameters.gamlss
Find names of model parameters from mixed modelsfind_parameters.glmmTMB
Find names of model parameters from zero-inflated modelsfind_parameters.zeroinfl
Find names of model predictorsfind_predictors find_predictors.default
Find names of random effectsfind_random
Find names of random slopesfind_random_slopes
Find name of the response variablefind_response find_response.joint find_response.mjoint
Find smooth terms from a model objectfind_smooth
Find statistic for modelfind_statistic
Find all model termsfind_terms find_terms.default
Find possible transformation of model variablesfind_transformation find_transformation.default
Find names of all variablesfind_variables
Find names of model weightsfind_weights
Sample data setfish
Bayes Factor formattingformat_bf
Capitalizes the first letter in a stringformat_capitalize
Confidence/Credible Interval (CI) Formattingformat_ci format_ci.numeric
Format messages and warningsformat_alert format_error format_message format_warning
Convert number to wordsformat_number
p-values formattingformat_p
Probability of direction (pd) formattingformat_pd
Percentage in ROPE formattingformat_rope
String Values Formattingformat_string format_string.character
Parameter table formattingformat_table
Numeric Values Formattingformat_percent format_value format_value.data.frame format_value.numeric
Get auxiliary parameters from modelsget_auxiliary get_dispersion get_dispersion.default
Get the model's function callget_call
Get the data that was used to fit the modelget_data get_data.afex_aov get_data.default get_data.glmmTMB get_data.rma
Create a reference gridget_datagrid get_datagrid.data.frame get_datagrid.default get_datagrid.factor get_datagrid.numeric
Extract a reference grid from objects created by '{emmeans}' and '{marginaleffects}'get_datagrid.emmGrid
Model Devianceget_deviance get_deviance.default
Extract degrees of freedomget_df get_df.default
A robust alternative to stats::familyget_family
Get the value at the interceptget_intercept
Log-Likelihood and Log-Likelihood correctionget_loglikelihood get_loglikelihood.lm get_loglikelihood_adjustment loglikelihood
Model Matrixget_modelmatrix
Get model parametersget_parameters get_parameters.default
Get model parameters from marginal effects modelsget_parameters.betamfx
Get model parameters from models with special componentsget_parameters.betareg
Get model parameters from Bayesian modelsget_parameters.BFBayesFactor get_parameters.BGGM get_parameters.brmsfit
Get model parameters from estimated marginal means objectsget_parameters.emmGrid
Get model parameters from generalized additive modelsget_parameters.gamm
Get model parameters from mixed modelsget_parameters.glmmTMB
Get model parameters from htest-objectsget_parameters.htest
Get model parameters from zero-inflated and hurdle modelsget_parameters.zeroinfl
Model predictions (robust) and their confidence intervalsget_predicted get_predicted.default get_predicted.gam get_predicted.lm get_predicted.lmerMod get_predicted.principal get_predicted.stanreg
Confidence intervals around predicted valuesget_predicted_ci get_predicted_ci.default
Get the data from model predictorsget_predictors
Get summary of priors used for a modelget_priors get_priors.brmsfit
Get the data from random effectsget_random
Extract model residualsget_residuals get_residuals.default
Get the values from the response variableget_response get_response.default get_response.nestedLogit
Get residual standard deviation from modelsget_sigma
Get statistic associated with estimatesget_statistic get_statistic.default get_statistic.emmGrid get_statistic.gee get_statistic.glmmTMB
Return function of transformed response variablesget_transformation
Get variance-covariance matrix from modelsget_varcov get_varcov.aov get_varcov.betamfx get_varcov.betareg get_varcov.brmsfit get_varcov.clm2 get_varcov.default get_varcov.glmgee get_varcov.glmmTMB get_varcov.hurdle get_varcov.MixMod get_varcov.mixor get_varcov.nestedLogit get_varcov.truncreg
Get variance components from random effects modelsget_correlation_slopes get_correlation_slope_intercept get_variance get_variance.glmmTMB get_variance.merMod get_variance_dispersion get_variance_distribution get_variance_fixed get_variance_intercept get_variance_random get_variance_residual get_variance_slope
Get the values from model weightsget_weights get_weights.default
Checks if model has an intercepthas_intercept
Convergence test for mixed effects modelsis_converged
Check if object is emptyis_empty_object
Checks if a model is a generalized additive modelis_gam_model
Checks if a model is a mixed effects modelis_mixed_model
Checks if an object is a regression model or statistical test objectis_model is_regression_model
Checks if a regression model object is supported by the insight packageis_model_supported supported_models
Checks if an object stems from a multivariate response modelis_multivariate
Checks whether a list of models are nested modelsis_nested_models
Checks if model is a null-model (intercept-only)is_nullmodel
Get link-function from model objectlink_function link_function.betamfx link_function.betareg link_function.DirichletRegModel link_function.gamlss
Get link-inverse function from model objectlink_inverse link_inverse.betamfx link_inverse.betareg link_inverse.DirichletRegModel link_inverse.gamlss
Access information from model objectsmodel_info model_info.default
Name the modelmodel_name model_name.default
Count number of random effect levels in a mixed modeln_grouplevels
Get number of observations from a modeln_obs n_obs.afex_aov n_obs.glm n_obs.stanmvreg n_obs.svyolr
Count number of parameters in a modeln_parameters n_parameters.brmsfit n_parameters.default n_parameters.gam n_parameters.glmmTMB n_parameters.merMod n_parameters.zeroinfl
Compute intercept-only model for regression modelsnull_model
Check names and rownamesobject_has_names object_has_rownames
Coloured console outputcolor_text color_theme colour_text print_color print_colour
Prepare summary statistics of model parameters for printingprint_parameters
Standardize column orderstandardize_column_order standardize_column_order.parameters_model
Standardize column namesstandardize_names standardize_names.parameters_model
Remove backticks from a stringtext_remove_backticks text_remove_backticks.data.frame
Small helper functionshas_single_value n_unique n_unique.default safe_deparse safe_deparse_symbol trim_ws trim_ws.data.frame
Validate arguments against a given set of optionsvalidate_argument