Package: hrf 0.1.3
hrf: Hemodynamic Response Function
Computes the hemodynamic response function (HRF) for task functional magnetic resonance imaging (fMRI) data. Also includes functions for constructing a design matrix from task fMRI event timings, and for comparing multiple design matrices in a general linear model (GLM). A wrapper function is provided for GLM analysis of CIFTI-format data. Lastly, there are supporting functions which provide visual summaries of the HRFs and design matrices.
Authors:
hrf_0.1.3.tar.gz
hrf_0.1.3.tar.gz(r-4.5-noble)hrf_0.1.3.tar.gz(r-4.4-noble)
hrf_0.1.3.tgz(r-4.4-emscripten)hrf_0.1.3.tgz(r-4.3-emscripten)
hrf.pdf |hrf.html✨
hrf/json (API)
NEWS
# Install 'hrf' in R: |
install.packages('hrf', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/mandymejia/hrf/issues
Last updated 22 days agofrom:2b6be4917d. Checks:2 OK. Indexed: no.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Jan 30 2025 |
R-4.5-linux | OK | Jan 30 2025 |
Exports:cderivdo_QCHRF_calcHRF_mainHRF96make_designmultiGLMmultiGLM_funplot_designplot_design_imageplot_design_line
Dependencies:abindbackportsbase64encbitopsbootbroombslibcachemcarcarDataciftiToolsclicolorspacecowplotcpp11DerivdigestdoBydotCall64dplyrevaluatefansifarverfastmapfieldsfMRItoolsfontawesomeFormulafsgenericsggplot2giftigluegtablehighrhtmltoolshtmlwidgetsisobandjquerylibjsonliteknitrlabelinglatticelifecyclelme4magrittrmapsMASSMatrixMatrixModelsmatrixStatsmemoisemgcvmicrobenchmarkmimeminqamodelrmunsellnlmenloptrnnetnumDerivoro.niftipbkrtestpillarpkgconfigpurrrquantregR.methodsS3R.ooR.utilsR6rappdirsrbibutilsRColorBrewerRcppRcppEigenRdpackreformulasrglrlangrmarkdownRNiftisassscalesspamSparseMstringistringrsurvivaltibbletidyrtidyselecttinytexutf8vctrsviridisLitewithrxfunxml2yaml
Readme and manuals
Help Manual
Help page | Topics |
---|---|
aic | aic_Param |
ar_order | ar_order_Param |
ar_smooth | ar_smooth_Param |
BOLD | BOLD_Param_BayesGLM |
brainstructures | brainstructures_Param_BayesGLM |
Central derivative | cderiv |
Connectome Workbench | Connectome_Workbench_Description |
design | design_Param_BayesGLM |
Mask out invalid data | do_QC |
faces | faces_Param |
field_names | field_names_Param |
hpf | hpf_Param_BayesGLM |
Canonical HRF and Derivatives | HRF_calc |
Canonical (double-gamma) HRF | HRF_main |
Canonical (double-gamma) HRF (old one from SPM96, Glover) | HRF96 |
Make design matrix | make_design |
mask: vertices | mask_Param_vertices |
mean and variance tolerance | mean_var_Tol_Param |
multiGLM for CIFTI | multiGLM |
multiGLM0 | multiGLM_fun |
nuisance | nuisance_Param_BayesGLM |
Plot design matrix | plot_design plot_design_image plot_design_line |
S3 method: use 'view_xifti' to plot a '"BGLM"' object | plot.BfMRI_design |
resamp_res | resamp_res_Param_BayesGLM |
scale_BOLD | scale_BOLD_Param |
scrub | scrub_Param_BayesGLM |
session_names | session_names_Param |
Summarize a '"BfMRI_design"' object | print.BfMRI_design print.summary.BfMRI_design summary.BfMRI_design |
surfaces | surfaces_Param_BayesGLM |
TR | TR_Param_BayesGLM |
verbose | verbose_Param |