Package: hmcdm 2.1.1

Sunbeom Kwon

hmcdm: Hidden Markov Cognitive Diagnosis Models for Learning

Fitting hidden Markov models of learning under the cognitive diagnosis framework. The estimation of the hidden Markov diagnostic classification model, the first order hidden Markov model, the reduced-reparameterized unified learning model, and the joint learning model for responses and response times.

Authors:Susu Zhang [aut], Shiyu Wang [aut], Yinghan Chen [aut], Sunbeom Kwon [aut, cre]

hmcdm_2.1.1.tar.gz
hmcdm_2.1.1.tar.gz(r-4.5-noble)hmcdm_2.1.1.tar.gz(r-4.4-noble)
hmcdm_2.1.1.tgz(r-4.4-emscripten)hmcdm_2.1.1.tgz(r-4.3-emscripten)
hmcdm.pdf |hmcdm.html
hmcdm/json (API)
NEWS

# Install 'hmcdm' in R:
install.packages('hmcdm', repos = 'https://cloud.r-project.org')

Bug tracker:https://github.com/tmsalab/hmcdm/issues0 issues

Uses libs:
  • openblas– Optimized BLAS
  • c++– GNU Standard C++ Library v3
  • openmp– GCC OpenMP (GOMP) support library
Datasets:

On CRAN:

Conda:

openblascppopenmp

3.48 score 187 downloads 11 exports 54 dependencies

Last updated 2 years agofrom:cc83242cd3. Checks:3 OK. Indexed: no.

TargetResultLatest binary
Doc / VignettesOKMar 30 2025
R-4.5-linux-x86_64OKMar 30 2025
R-4.4-linux-x86_64OKMar 30 2025

Exports:ETAmathmcdminv_bijectionvectorOddsRatioQ_list_grandom_QrOmegasim_alphassim_hmcdmsim_RTTPmat

Dependencies:abindbackportsbayesplotcheckmateclicolorspacecrayondescdistributionaldplyrfansifarvergenericsggplot2ggridgesgluegtablehmsisobandlabelinglatticelifecyclemagrittrMASSMatrixmatrixStatsmgcvmunsellnlmenumDerivpillarpkgconfigplyrposteriorprettyunitsprogressR6RColorBrewerRcppRcppArmadilloRcppParallelreshape2rlangrstantoolsscalesstringistringrtensorAtibbletidyselectutf8vctrsviridisLitewithr

DINA_FOHM

Rendered fromDINA_FOHM.Rmdusingknitr::rmarkdownon Mar 30 2025.

Last update: 2023-01-25
Started: 2022-08-29

DINA_HO_RT_joint

Rendered fromDINA_HO_RT_joint.Rmdusingknitr::rmarkdownon Mar 30 2025.

Last update: 2023-01-25
Started: 2022-08-29

DINA_HO_RT_sep

Rendered fromDINA_HO_RT_sep.Rmdusingknitr::rmarkdownon Mar 30 2025.

Last update: 2023-01-25
Started: 2022-08-29

HMDCM

Rendered fromHMDCM.Rmdusingknitr::rmarkdownon Mar 30 2025.

Last update: 2023-01-25
Started: 2022-08-29

NIDA_indept

Rendered fromNIDA_indept.Rmdusingknitr::rmarkdownon Mar 30 2025.

Last update: 2023-01-25
Started: 2022-08-29

rRUM_indept

Rendered fromrRUM_indept.Rmdusingknitr::rmarkdownon Mar 30 2025.

Last update: 2023-01-25
Started: 2022-08-29

Citation

To cite package ‘hmcdm’ in publications use:

Zhang S, Wang S, Chen Y, Kwon S (2023). hmcdm: Hidden Markov Cognitive Diagnosis Models for Learning. R package version 2.1.1, https://CRAN.R-project.org/package=hmcdm.

Corresponding BibTeX entry:

  @Manual{,
    title = {hmcdm: Hidden Markov Cognitive Diagnosis Models for
      Learning},
    author = {Susu Zhang and Shiyu Wang and Yinghan Chen and Sunbeom
      Kwon},
    year = {2023},
    note = {R package version 2.1.1},
    url = {https://CRAN.R-project.org/package=hmcdm},
  }

Readme and manuals

hmcdm

The goal of hmcdm is to provide an implementation of Hidden Markov Cognitive Diagnosis Models for Learning.

Installation

You can install hmcdm from CRAN using:

install.packages("hmcdm")

Or, you can be on the cutting-edge development version on GitHub using:

if(!requireNamespace("remotes")) install.packages("remotes")
remotes::install_github("tmsalab/hmcdm")

Usage

To use hmcdm, load the package using:

library("hmcdm")

Authors

Susu Zhang, Shiyu Wang, Yinghan Chen, and Sunbeom Kwon

Citing the hmcdm package

To ensure future development of the package, please cite hmcdm package if used during an analysis or simulation study. Citation information for the package may be acquired by using in R:

citation("hmcdm")

License

GPL (>= 2)

Help Manual

Help pageTopics
hmcdm: Hidden Markov Cognitive Diagnosis Models for Learninghmcdm-package _PACKAGE
Design arrayDesign_array
Generate ideal response matrixETAmat
Gibbs sampler for learning modelshmcdm
Convert integer to attribute patterninv_bijectionvector
Observed response times arrayL_real_array
Compute item pairwise odds ratioOddsRatio
Graphical posterior predictive checks for hidden Markov cognitive diagnosis modelpp_check.hmcdm
Summarizing Hidden Markov Cognitive Diagnosis Model Fitsprint.summary.hmcdm summary.hmcdm
Generate a list of Q-matrices for each examinee.Q_list_g
Q-matrixQ_matrix
Generate random Q matrixrandom_Q
Generate a random transition matrix for the first order hidden Markov modelrOmega
Generate attribute trajectories under the specified hidden Markov modelssim_alphas
Simulate responses from the specified model (entire cube)sim_hmcdm
Simulate item response times based on Wang et al.'s (2018) joint model of response times and accuracy in learningsim_RT
Test block ordering of each test versionTest_order
Subjects' test versionTest_versions
Generate monotonicity matrixTPmat
Observed response accuracy arrayY_real_array