Package: glmmrOptim 0.3.6

Sam Watson

glmmrOptim: Approximate Optimal Experimental Designs Using Generalised Linear Mixed Models

Optimal design analysis algorithms for any study design that can be represented or modelled as a generalised linear mixed model including cluster randomised trials, cohort studies, spatial and temporal epidemiological studies, and split-plot designs. See <https://github.com/samuel-watson/glmmrBase/blob/master/README.md> for a detailed manual on model specification. A detailed discussion of the methods in this package can be found in Watson, Hemming, and Girling (2023) <doi:10.1177/09622802231202379>.

Authors:Sam Watson [aut, cre], Yi Pan [aut]

glmmrOptim_0.3.6.tar.gz
glmmrOptim_0.3.6.tar.gz(r-4.5-noble)glmmrOptim_0.3.6.tar.gz(r-4.4-noble)
glmmrOptim_0.3.6.tgz(r-4.4-emscripten)glmmrOptim_0.3.6.tgz(r-4.3-emscripten)
glmmrOptim.pdf |glmmrOptim.html
glmmrOptim/json (API)

# Install 'glmmrOptim' in R:
install.packages('glmmrOptim', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/samuel-watson/glmmroptim/issues

Uses libs:
  • c++– GNU Standard C++ Library v3
  • openmp– GCC OpenMP (GOMP) support library

cppopenmp

1.48 score 532 downloads 3 exports 58 dependencies

Last updated 13 days agofrom:73a85ced5c. Checks:OK: 2. Indexed: no.

TargetResultDate
Doc / VignettesOKDec 17 2024
R-4.5-linux-x86_64OKDec 17 2024

Exports:apportionDesignSpacesetParallelOptim

Dependencies:abindbackportsBHcallrcheckmateclicolorspacedescdigestdistributionalfansifarvergenericsggplot2glmmrBasegluegridExtragtableinlineisobandlabelinglatticelifecycleloomagrittrMASSMatrixmatrixStatsmgcvmunsellnlmenumDerivpillarpkgbuildpkgconfigposteriorprocessxpsQuickJSRR6RColorBrewerRcppRcppEigenRcppParallelRcppProgressrlangrminqarstanrstantoolsscalesSparseCholStanHeaderstensorAtibbleutf8vctrsviridisLitewithr