Package: glmmEP 1.0-3.1

Matt P. Wand

glmmEP: Generalized Linear Mixed Model Analysis via Expectation Propagation

Approximate frequentist inference for generalized linear mixed model analysis with expectation propagation used to circumvent the need for multivariate integration. In this version, the random effects can be any reasonable dimension. However, only probit mixed models with one level of nesting are supported. The methodology is described in Hall, Johnstone, Ormerod, Wand and Yu (2018) <arxiv:1805.08423v1>.

Authors:Matt P. Wand [aut, cre], James C.F. Yu [aut]

glmmEP_1.0-3.1.tar.gz
glmmEP_1.0-3.1.tar.gz(r-4.5-noble)glmmEP_1.0-3.1.tar.gz(r-4.4-noble)
glmmEP_1.0-3.1.tgz(r-4.4-emscripten)glmmEP_1.0-3.1.tgz(r-4.3-emscripten)
glmmEP.pdf |glmmEP.html
glmmEP/json (API)

# Install 'glmmEP' in R:
install.packages('glmmEP', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Uses libs:
  • openblas– Optimized BLAS

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

fortranopenblas

2.08 score 12 scripts 160 downloads 5 exports 14 dependencies

Last updated 5 years agofrom:31f200bb27. Checks:1 OK, 1 NOTE. Indexed: no.

TargetResultLatest binary
Doc / VignettesOKJan 13 2025
R-4.5-linux-x86_64NOTEJan 13 2025

Exports:glmmEPglmmEP.controlglmmEPvignetteglmmSimDatasummary.glmmEP

Dependencies:bootlatticelme4MASSMatrixmatrixcalcminqanlmenloptrrbibutilsRcppRcppEigenRdpackreformulas

glmmEP User Manual

Rendered frommanual.Rnwusingutils::Sweaveon Jan 13 2025.

Last update: 2018-05-29
Started: 2018-05-29