Package: gigg 0.2.1
gigg: Group Inverse-Gamma Gamma Shrinkage for Sparse Regression with Grouping Structure
A Gibbs sampler corresponding to a Group Inverse-Gamma Gamma (GIGG) regression model with adjustment covariates. Hyperparameters in the GIGG prior specification can either be fixed by the user or can be estimated via Marginal Maximum Likelihood Estimation. Jonathan Boss, Jyotishka Datta, Xin Wang, Sung Kyun Park, Jian Kang, Bhramar Mukherjee (2021) <arxiv:2102.10670>.
Authors:
gigg_0.2.1.tar.gz
gigg_0.2.1.tar.gz(r-4.5-noble)gigg_0.2.1.tar.gz(r-4.4-noble)
gigg_0.2.1.tgz(r-4.4-emscripten)gigg_0.2.1.tgz(r-4.3-emscripten)
gigg.pdf |gigg.html✨
gigg/json (API)
# Install 'gigg' in R: |
install.packages('gigg', repos = 'https://cloud.r-project.org') |
Bug tracker:https://github.com/umich-cphds/gigg/issues0 issues
- concentrated - Example data set
- distributed - Example data set
Last updated 4 years agofrom:f84b9a3af3. Checks:1 OK, 2 NOTE. Indexed: no.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Mar 09 2025 |
R-4.5-linux-x86_64 | NOTE | Mar 09 2025 |
R-4.4-linux-x86_64 | NOTE | Mar 09 2025 |
Exports:gigg
Dependencies:BHRcppRcppArmadillo
Citation
To cite package ‘gigg’ in publications use:
Boss J, Mukherjee B (2021). gigg: Group Inverse-Gamma Gamma Shrinkage for Sparse Regression with Grouping Structure. R package version 0.2.1, https://CRAN.R-project.org/package=gigg.
Corresponding BibTeX entry:
@Manual{, title = {gigg: Group Inverse-Gamma Gamma Shrinkage for Sparse Regression with Grouping Structure}, author = {Jon Boss and Bhramar Mukherjee}, year = {2021}, note = {R package version 0.2.1}, url = {https://CRAN.R-project.org/package=gigg}, }
Readme and manuals
R package gigg
gigg
Group Inverse-Gamma Gamma Shrinkage for Sparse Regression with Grouping Structure
Overview
This package implements a Gibbs sampler corresponding to a Group Inverse-Gamma Gamma (GIGG) regression model with adjustment covariates. Hyperparameters in the GIGG prior specification can either be fixed by the user or can be estimated via Marginal Maximum Likelihood Estimation.
Installation
If the devtools package is not yet installed, install it first:
install.packages('devtools')
# install the package from Github:
devtools::install_github('umich-cphds/gigg')
Once installed, load the package:
library(gigg)
Examples
GIGG regression Gibbs sampler with fixed hyperparameters:
X = concentrated$X
C = concentrated$C
Y = as.vector(concentrated$Y)
grp_idx = concentrated$grps
alpha_inits = concentrated$alpha
beta_inits = concentrated$beta
gf = gigg(X, C, Y, method = "fixed", grp_idx, alpha_inits, beta_inits,
n_burn_in = 500, n_samples = 1000, n_thin = 1,
verbose = TRUE, btrick = FALSE, stable_solve = TRUE)
GIGG regression Gibbs sampler with hyperparameter estimation via Marginal Maximum Likelihood Estimation:
X = concentrated$X
C = concentrated$C
Y = as.vector(concentrated$Y)
grp_idx = concentrated$grps
alpha_inits = concentrated$alpha
beta_inits = concentrated$beta
gf_mmle = gigg(X, C, Y, method = "mmle", grp_idx, alpha_inits, beta_inits,
n_burn_in = 500, n_samples = 1000, n_thin = 1,
verbose = TRUE, btrick = FALSE, stable_solve = TRUE)
Current Suggested Citation
Boss, J., Datta, J., Wang, X., Park, S.K., Kang, J., & Mukherjee, B. (2021). Group Inverse-Gamma Gamma Shrinkage for Sparse Regression with Block-Correlated Predictors. arXiv preprint arXiv:2102.10670.
Help Manual
Help page | Topics |
---|---|
Solve function with Cholesky decomposition. | chol_solve |
Example data set | concentrated |
Inverse digamma function. | digamma_inv |
Example data set | distributed |
GIGG regression | gigg |
Gibbs sampler for GIGG regression with fixed hyperparameters. | gigg_fixed_gibbs_sampler |
Gibbs sampler for GIGG regression with hyperparameters estimated via MMLE. | gigg_mmle_gibbs_sampler |
Iterative one rank update for matrix inverse. | quick_solve |
Randomly generate a generalized inverse gaussian random variable. | rgig_cpp |