Package: ggpca 0.1.2

Yaoxiang Li

ggpca: Publication-Ready PCA, t-SNE, and UMAP Plots

Provides tools for creating publication-ready dimensionality reduction plots, including Principal Component Analysis (PCA), t-Distributed Stochastic Neighbor Embedding (t-SNE), and Uniform Manifold Approximation and Projection (UMAP). This package helps visualize high-dimensional data with options for custom labels, density plots, and faceting, using the 'ggplot2' framework Wickham (2016) <doi:10.1007/978-3-319-24277-4>.

Authors:Yaoxiang Li [cre, aut]

ggpca_0.1.2.tar.gz
ggpca_0.1.2.tar.gz(r-4.5-noble)ggpca_0.1.2.tar.gz(r-4.4-noble)
ggpca_0.1.2.tgz(r-4.4-emscripten)ggpca_0.1.2.tgz(r-4.3-emscripten)
ggpca.pdf |ggpca.html
ggpca/json (API)

# Install 'ggpca' in R:
install.packages('ggpca', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

2.00 score 2 exports 71 dependencies

Last updated 2 days agofrom:6a685a0f50. Checks:OK: 2. Indexed: no.

TargetResultDate
Doc / VignettesOKOct 29 2024
R-4.5-linuxOKOct 29 2024

Exports:ggpcarun_app

Dependencies:askpassattemptbase64encbslibcachemclicolorspacecommonmarkconfigcowplotcrayondigestdplyrfansifarverfastmapfontawesomefsgenericsggplot2gluegolemgtableherehtmltoolshttpuvisobandjquerylibjsonlitelabelinglaterlatticelifecyclemagrittrMASSMatrixmemoisemgcvmimemunsellnlmeopensslpillarpkgconfigpngpromisesR6rappdirsRColorBrewerRcppRcppEigenRcppTOMLreticulaterlangrprojrootRSpectraRtsnesassscalesshinysourcetoolssystibbletidyselectumaputf8vctrsviridisLitewithrxtableyaml

Using ggpca for Publication-Ready Dimensionality Reduction Plots

Rendered fromggpca-examples.Rmdusingknitr::rmarkdownon Oct 29 2024.

Last update: 2024-10-28
Started: 2024-10-28