Package: geoFKF 0.1.1

Gilberto Sassi

geoFKF: Kriging Method for Spatial Functional Data

A Kriging method for functional datasets with spatial dependency. This functional Kriging method avoids the need to estimate the trace-variogram, and the curve is estimated by minimizing a quadratic form. The curves in the functional dataset are smoothed using Fourier series. The functional Kriging of this package is a modification of the method proposed by Giraldo (2011) <doi:10.1007/s10651-010-0143-y>.

Authors:Gilberto Sassi [aut, cre]

geoFKF_0.1.1.tar.gz
geoFKF_0.1.1.tar.gz(r-4.5-noble)geoFKF_0.1.1.tar.gz(r-4.4-noble)
geoFKF_0.1.1.tgz(r-4.4-emscripten)geoFKF_0.1.1.tgz(r-4.3-emscripten)
geoFKF.pdf |geoFKF.html
geoFKF/json (API)

# Install 'geoFKF' in R:
install.packages('geoFKF', repos = 'https://cloud.r-project.org')

Bug tracker:https://github.com/gilberto-sassi/geofkf/issues0 issues

Uses libs:
  • openblas– Optimized BLAS
  • c++– GNU Standard C++ Library v3
  • openmp– GCC OpenMP (GOMP) support library
Datasets:

On CRAN:

Conda:

openblascppopenmp

1.70 score 183 downloads 5 exports 3 dependencies

Last updated 3 years agofrom:38ae48cb64. Checks:1 OK, 2 NOTE. Indexed: no.

TargetResultLatest binary
Doc / VignettesOKMar 25 2025
R-4.5-linux-x86_64NOTEMar 25 2025
R-4.4-linux-x86_64NOTEMar 25 2025

Exports:coef_fourierfourier_bgeo_fkflog_lik_rflogLikMultiNorm

Dependencies:numDerivRcppRcppArmadillo

Citation

To cite package ‘geoFKF’ in publications use:

Sassi G (2022). geoFKF: Kriging Method for Spatial Functional Data. R package version 0.1.1, https://CRAN.R-project.org/package=geoFKF.

Corresponding BibTeX entry:

  @Manual{,
    title = {geoFKF: Kriging Method for Spatial Functional Data},
    author = {Gilberto Sassi},
    year = {2022},
    note = {R package version 0.1.1},
    url = {https://CRAN.R-project.org/package=geoFKF},
  }

Readme and manuals

geoFKF

The goal of geoFKF is to implement a kriging method for spatial functional data.

Installation

You can install the development version of geoFKF from GitHub using devtools package.

# install.packages("devtools")
devtools::install_github("gilberto-sassi/geoFKF")

Example

This is a basic example which shows you how to solve a common problem:

library(ggplot2)
library(geoFKF)
data("datasetCanada")

m_data <- as.matrix(datasetCanada$m_data)
m_coord <- as.matrix(datasetCanada$m_coord[, 1:2])
pos <- 18
log_pos <- !(seq_len(nrow(m_coord)) %in% pos)
new_loc <- m_coord[pos, ]
m_coord <- m_coord[log_pos, ]
y_true <- m_data[, pos]
m_data <- m_data[, log_pos]

x <- seq(from = -pi, to = pi, length.out = length(y_true))

fit <- geo_fkf(m_data, m_coord, new_loc, t = x)

df <- data.frame(x , y_true, y_est = fit$estimates)

ggplot(df) +
  geom_line(aes(x, y_true), color = "red") +
  geom_line(aes(x, y_est), color = "blue")