Package: geoFKF 0.1.1
geoFKF: Kriging Method for Spatial Functional Data
A Kriging method for functional datasets with spatial dependency. This functional Kriging method avoids the need to estimate the trace-variogram, and the curve is estimated by minimizing a quadratic form. The curves in the functional dataset are smoothed using Fourier series. The functional Kriging of this package is a modification of the method proposed by Giraldo (2011) <doi:10.1007/s10651-010-0143-y>.
Authors:
geoFKF_0.1.1.tar.gz
geoFKF_0.1.1.tar.gz(r-4.5-noble)geoFKF_0.1.1.tar.gz(r-4.4-noble)
geoFKF_0.1.1.tgz(r-4.4-emscripten)geoFKF_0.1.1.tgz(r-4.3-emscripten)
geoFKF.pdf |geoFKF.html✨
geoFKF/json (API)
# Install 'geoFKF' in R: |
install.packages('geoFKF', repos = 'https://cloud.r-project.org') |
Bug tracker:https://github.com/gilberto-sassi/geofkf/issues0 issues
- datasetCanada - Temperature datasets from Canada.
Last updated 3 years agofrom:38ae48cb64. Checks:1 OK, 2 NOTE. Indexed: no.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Mar 25 2025 |
R-4.5-linux-x86_64 | NOTE | Mar 25 2025 |
R-4.4-linux-x86_64 | NOTE | Mar 25 2025 |
Exports:coef_fourierfourier_bgeo_fkflog_lik_rflogLikMultiNorm
Dependencies:numDerivRcppRcppArmadillo
Citation
To cite package ‘geoFKF’ in publications use:
Sassi G (2022). geoFKF: Kriging Method for Spatial Functional Data. R package version 0.1.1, https://CRAN.R-project.org/package=geoFKF.
Corresponding BibTeX entry:
@Manual{, title = {geoFKF: Kriging Method for Spatial Functional Data}, author = {Gilberto Sassi}, year = {2022}, note = {R package version 0.1.1}, url = {https://CRAN.R-project.org/package=geoFKF}, }
Readme and manuals
geoFKF
The goal of geoFKF is to implement a kriging method for spatial functional data.
Installation
You can install the development version of geoFKF from
GitHub using devtools
package.
# install.packages("devtools")
devtools::install_github("gilberto-sassi/geoFKF")
Example
This is a basic example which shows you how to solve a common problem:
library(ggplot2)
library(geoFKF)
data("datasetCanada")
m_data <- as.matrix(datasetCanada$m_data)
m_coord <- as.matrix(datasetCanada$m_coord[, 1:2])
pos <- 18
log_pos <- !(seq_len(nrow(m_coord)) %in% pos)
new_loc <- m_coord[pos, ]
m_coord <- m_coord[log_pos, ]
y_true <- m_data[, pos]
m_data <- m_data[, log_pos]
x <- seq(from = -pi, to = pi, length.out = length(y_true))
fit <- geo_fkf(m_data, m_coord, new_loc, t = x)
df <- data.frame(x , y_true, y_est = fit$estimates)
ggplot(df) +
geom_line(aes(x, y_true), color = "red") +
geom_line(aes(x, y_est), color = "blue")

Help Manual
Help page | Topics |
---|---|
Computing coefficients Fourier. | coef_fourier |
Temperature datasets from Canada. | datasetCanada |
Smoothed curve in Fourier Series. | fourier_b |
Kriging method for Spatial Functional Data. | geo_fkf |
Maximum likelihood estimate for sigma^2, phi and rho. | log_lik_rf |
Log likelihood function for multivariate normal with spatial dependency. | logLikMultiNorm |