Package: fwlplot 0.3.0
fwlplot: Scatter Plot After Residualizing Using 'fixest' Package
Creates a scatter plot after residualizing using a set of covariates. The residuals are calculated using the 'fixest' package which allows very fast estimation that scales. Details of the (Yule-)Frisch-Waugh-Lovell theorem is given in Basu (2023) <doi:10.48550/arXiv.2307.00369>.
Authors:
fwlplot_0.3.0.tar.gz
fwlplot_0.3.0.tar.gz(r-4.5-noble)fwlplot_0.3.0.tar.gz(r-4.4-noble)
fwlplot_0.3.0.tgz(r-4.4-emscripten)fwlplot_0.3.0.tgz(r-4.3-emscripten)
fwlplot.pdf |fwlplot.html✨
fwlplot/json (API)
NEWS
# Install 'fwlplot' in R: |
install.packages('fwlplot', repos = 'https://cloud.r-project.org') |
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 9 months agofrom:74d08938ec. Checks:3 OK. Indexed: no.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Mar 22 2025 |
R-4.5-linux | OK | Mar 22 2025 |
R-4.4-linux | OK | Mar 22 2025 |
Exports:fwl_plotfwlplotget_fml_parts
Dependencies:data.tabledreamerrfixestFormulalatticenlmenumDerivRcppsandwichstringmagictinyplotzoo
Citation
To cite package ‘fwlplot’ in publications use:
Butts K (2024). fwlplot: Scatter Plot After Residualizing Using 'fixest' Package. R package version 0.3.0, https://CRAN.R-project.org/package=fwlplot.
Corresponding BibTeX entry:
@Manual{, title = {fwlplot: Scatter Plot After Residualizing Using 'fixest' Package}, author = {Kyle Butts}, year = {2024}, note = {R package version 0.3.0}, url = {https://CRAN.R-project.org/package=fwlplot}, }
Readme and manuals
fwlplot
This is a super simple package to help make scatter plots of two
variables after residualizing by covariates. This package uses fixest
so things are super fast. This is meant to (as much as possible) be a
drop in replacement for fixest::feols
. You should be able to replace
feols
with fwl_plot
and get a plot.
Installation
The stable version of fwlplot
is available on CRAN.
install.packages("fwlplot")
Or, you can grab the latest development version from GitHub.
# install.packages("remotes")
remotes::install_github("kylebutts/fwlplot")
Example
Here’s a simple example with fixed effects removed by fixest
.
library(fwlplot)
library(fixest)
flights <- data.table::fread("https://raw.githubusercontent.com/Rdatatable/data.table/master/vignettes/flights14.csv")
flights[, long_distance := distance > 2000]
# Sample 10000 rows
sample <- flights[sample(.N, 10000)]
# Without covariates = scatterplot
fwl_plot(dep_delay ~ air_time, data = sample)

# With covariates = FWL'd scatterplot
fwl_plot(
dep_delay ~ air_time | origin + dest,
data = sample, vcov = "hc1"
)

Plot random sample
If you have a large dataset, we can plot a sample of points with the
n_sample
argument. This determines the number of points per plot
(see multiple estimation below).
fwl_plot(
dep_delay ~ air_time | origin + dest,
# Full dataset for estimation, 1000 obs. for plotting
data = flights, n_sample = 1000
)

Full feols compatabilityfeols
This is meant to be a 1:1 drop-in replacement with fixest, so everything
should work by just replacing feols
with
feols(
dep_delay ~ air_time | origin + dest,
data = sample, subset = ~long_distance, cluster = ~origin
)
#> OLS estimation, Dep. Var.: dep_delay
#> Observations: 1,746
#> Subset: long_distance
#> Fixed-effects: origin: 2, dest: 15
#> Standard-errors: Clustered (origin)
#> Estimate Std. Error t value Pr(>|t|)
#> air_time 0.081485 0.052053 1.56541 0.3619
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> RMSE: 39.9 Adj. R2: 0.005478
#> Within R2: 0.001048
fwl_plot(
dep_delay ~ air_time | origin + dest,
data = sample, subset = ~long_distance, cluster = ~origin
)

Multiple estimation
# Multiple y variables
fwl_plot(
c(dep_delay, arr_delay) ~ air_time | origin + dest,
data = sample
)

# `split` sample
fwl_plot(
c(dep_delay, arr_delay) ~ air_time | origin + dest,
data = sample, split = ~long_distance, n_sample = 1000
)

# `fsplit` = `split` sample and Full sample
fwl_plot(
c(dep_delay, arr_delay) ~ air_time | origin + dest,
data = sample, fsplit = ~long_distance, n_sample = 1000
)

ggplot2
library(ggplot2)
theme_set(theme_grey(base_size = 16))
fwl_plot(
c(dep_delay, arr_delay) ~ air_time | origin + dest,
data = sample, fsplit = ~long_distance,
n_sample = 1000, ggplot = TRUE
)

Help Manual
Help page | Topics |
---|---|
Break apart formula (from right to left) based on a symbole ('~' or '|') | fml_breaker |
FWL Plot | fwlplot fwl_plot |
Split formula into terms | get_fml_parts |