Package: frailtyMMpen 1.2.1

Yunpeng Zhou

frailtyMMpen: Efficient Algorithm for High-Dimensional Frailty Model

The penalized and non-penalized Minorize-Maximization (MM) method for frailty models to fit the clustered data, multi-event data and recurrent data. Least absolute shrinkage and selection operator (LASSO), minimax concave penalty (MCP) and smoothly clipped absolute deviation (SCAD) penalized functions are implemented. All the methods are computationally efficient. These general methods are proposed based on the following papers, Huang, Xu and Zhou (2022) <doi:10.3390/math10040538>, Huang, Xu and Zhou (2023) <doi:10.1177/09622802221133554>.

Authors:Xifen Huang [aut], Yunpeng Zhou [aut, cre], Jinfeng Xu [ctb]

frailtyMMpen_1.2.1.tar.gz
frailtyMMpen_1.2.1.tar.gz(r-4.5-noble)frailtyMMpen_1.2.1.tar.gz(r-4.4-noble)
frailtyMMpen_1.2.1.tgz(r-4.4-emscripten)frailtyMMpen_1.2.1.tgz(r-4.3-emscripten)
frailtyMMpen.pdf |frailtyMMpen.html
frailtyMMpen/json (API)
NEWS

# Install 'frailtyMMpen' in R:
install.packages('frailtyMMpen', repos = 'https://cloud.r-project.org')
Uses libs:
  • gsl– GNU Scientific Library (GSL)
  • c++– GNU Standard C++ Library v3
Datasets:

On CRAN:

Conda:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

gslcpp

1.70 score 212 downloads 4 exports 8 dependencies

Last updated 2 years agofrom:a1d0a64d78. Checks:1 OK, 2 NOTE. Indexed: no.

TargetResultLatest binary
Doc / VignettesOKApr 02 2025
R-4.5-linux-x86_64NOTEApr 02 2025
R-4.4-linux-x86_64NOTEApr 02 2025

Exports:clustereventfrailtyMMfrailtyMMpen

Dependencies:latticeMatrixmgcvnlmenumDerivRcppRcppGSLsurvival

Citation

To cite package ‘frailtyMMpen’ in publications use:

Huang X, Zhou Y (2023). frailtyMMpen: Efficient Algorithm for High-Dimensional Frailty Model. R package version 1.2.1, https://CRAN.R-project.org/package=frailtyMMpen.

Corresponding BibTeX entry:

  @Manual{,
    title = {frailtyMMpen: Efficient Algorithm for High-Dimensional
      Frailty Model},
    author = {Xifen Huang and Yunpeng Zhou},
    year = {2023},
    note = {R package version 1.2.1},
    url = {https://CRAN.R-project.org/package=frailtyMMpen},
  }

Readme and manuals

frailtyMMpen: Package for Penalized Frailty Models

This package implements the MM algorithm for a variety types of frailty models which can handle clustered data, multi-event data and recurrent data in addition to the simple frailty model. Besides, this package can obtain the estimation of parameters for penalized regression using LASSO, MCP and SCAD penalties. Currently supported frailty distributions include gamma, log-normal, inverse gaussian and PVF (1<p<2). The estimation procedure is computationally efficient which makes it also capable for handling high-dimensional data.

Installation

You can install developed version of frailtyMMpen from github with:

# install.packages("devtools")
devtools::install_github("heilokchow/frailtyMMpen")

Example

This is a basic example which shows you how to use this package, you may refer to the package manual for detailed descriptions and examples for each function.

We use the simulated data with 50 clusters and 10 objects in each cluster:

data(simdataCL)

We first run the non-penalized regression with Gamma frailty and obtain the summary statistics and the plot of conditional baseline hazard.

gam_cl = frailtyMM(Surv(time, status) ~ . + cluster(id), simdataCL, frailty = "gamma")

summary(gam_cl)

plot(gam_cl)

Then, we perform the penalized regression with Gamma frailty and LASSO penalty and obtain BIC, degree of freedom under a sequence of tuning parameters and the plot of regularization path.

gam_cl_pen = frailtyMMpen(Surv(time, status) ~ . + cluster(id), simdataCL, frailty = "gamma")

print(gam_cl_pen)

plot(gam_cl_pen)

Help Manual

Help pageTopics
cluster functioncluster
retrieve the coefficients under given tuning parametercoef.fpen
event functionevent
Fitting frailty models with clustered, multi-event and recurrent data using MM algorithmfrailtyMM
Fitting penalized frailty models with clustered, multi-event and recurrent data using MM algorithmfrailtyMMpen
Simulated High-dimensional Clustered datahdCLdata
Plot the baseline hazard or the predicted hazard based on the new dataplot.fmm
Plot the regularization pathplot.fpen
Estimate the baseline hazard or the predict hazard rate based on the new data for non-penalized regressionpredict.fmm
Estimate the baseline hazard or the predict hazard rate based on the new data for penalized regressionpredict.fpen
print a non-penalized regression objectprint.fmm
print a penalized regression objectprint.fpen
Simulated Clustered datasimdataCL
Simulated Multiple Event datasimdataME
Simulated Recurrent Event datasimdataRE
Provide the summary for the model fittingsummary.fmm