Package: fdasrvf 2.3.6

J. Derek Tucker

fdasrvf: Elastic Functional Data Analysis

Performs alignment, PCA, and modeling of multidimensional and unidimensional functions using the square-root velocity framework (Srivastava et al., 2011 <doi:10.48550/arXiv.1103.3817> and Tucker et al., 2014 <doi:10.1016/j.csda.2012.12.001>). This framework allows for elastic analysis of functional data through phase and amplitude separation.

Authors:J. Derek Tucker [aut, cre], Aymeric Stamm [ctb]

fdasrvf_2.3.6.tar.gz
fdasrvf_2.3.6.tar.gz(r-4.5-noble)fdasrvf_2.3.6.tar.gz(r-4.4-noble)
fdasrvf_2.3.6.tgz(r-4.4-emscripten)fdasrvf_2.3.6.tgz(r-4.3-emscripten)
fdasrvf.pdf |fdasrvf.html
fdasrvf/json (API)
NEWS

# Install 'fdasrvf' in R:
install.packages('fdasrvf', repos = 'https://cloud.r-project.org')

Bug tracker:https://github.com/jdtuck/fdasrvf_r/issues3 issues

Uses libs:
  • openblas– Optimized BLAS
  • c++– GNU Standard C++ Library v3
  • openmp– GCC OpenMP (GOMP) support library
Datasets:
  • beta - MPEG7 Curve Dataset
  • growth_vel - Berkeley Growth Velocity Dataset
  • im - Example Image Data set
  • simu_data - Simulated two Gaussian Dataset
  • simu_warp - Aligned Simulated two Gaussian Dataset
  • simu_warp_median - Aligned Simulated two Gaussian Dataset using Median
  • toy_data - Distributed Gaussian Peak Dataset
  • toy_warp - Aligned Distributed Gaussian Peak Dataset

On CRAN:

Conda:r-fdasrvf-2.3.6(2025-03-25)

openblascppopenmp

4.26 score 6 stars 3 packages 1.1k downloads 79 exports 83 dependencies

Last updated 1 months agofrom:8543c94124. Checks:3 OK. Indexed: no.

TargetResultLatest binary
Doc / VignettesOKMar 19 2025
R-4.5-linux-x86_64OKMar 19 2025
R-4.4-linux-x86_64OKMar 19 2025

Exports:align_fPCAbootTBcalc_shape_distcurve_boxplotcurve_depthcurve_distcurve_geodesiccurve_karcher_covcurve_karcher_meancurve_pair_aligncurve_principal_directionscurve_srvf_aligncurve_to_qcurve2srvfdiscrete2curvediscrete2warpingelastic_amp_change_ffelastic_change_fpcaelastic_ph_change_ffelastic.depthelastic.distanceelastic.lpcr.regressionelastic.mlpcr.regressionelastic.pcr.regressionf_plotf_to_srvffunction_group_warp_bayesgam_to_hgam_to_vgauss_modelget_curve_centroidget_distance_matrixget_hilbert_sphere_distanceget_identity_warpingget_l2_distanceget_l2_inner_productget_l2_normget_shape_distanceget_warping_distancegradienth_to_gamhorizFPCAinv_exp_mapinvertGammajoint_gauss_modeljointFPCAjointFPCAhkmeans_alignmultiple_align_functionsmultivariate_karcher_meanoptimum.reparamoutlier.detectionpair_align_functionspair_align_functions_bayespair_align_functions_expomappair_align_imagepcaTBplot_curveq_to_curvereparam_curvereparam_imageresamplecurvergamsample_shapesshape_CIsmooth.dataSqrtMeanSqrtMeanInverseSqrtMediansrvf_to_fsrvf2curvetime_warpingto_hilbert_spherev_to_gamvertFPCAwarp_curvewarp_f_gammawarp_q_gammawarp_srvf

Dependencies:askpassbase64encbslibcachemclicodacodetoolscolorspacecpp11crosstalkcurldata.tabledigestdoParalleldotCall64dplyrevaluatefansifarverfastmapfieldsfontawesomeforeachfsgenericsggplot2gluegtablehighrhtmltoolshtmlwidgetshttrisobanditeratorsjquerylibjsonliteknitrlabelinglaterlatticelazyevallifecyclelpSolvemagrittrmapsMASSMatrixmemoisemgcvmimemunsellmvtnormnlmeopensslpillarpkgconfigplotlypromisespurrrR6rappdirsRColorBrewerRcppRcppArmadillorlangrmarkdownsassscalesspamstringistringrsystibbletidyrtidyselecttinytextoleranceutf8vctrsviridisLitewithrxfunyaml

Citation

To cite package ‘fdasrvf’ in publications use:

Tucker J (2025). fdasrvf: Elastic Functional Data Analysis. R package version 2.3.6, https://CRAN.R-project.org/package=fdasrvf.

Corresponding BibTeX entry:

  @Manual{,
    title = {fdasrvf: Elastic Functional Data Analysis},
    author = {J. Derek Tucker},
    year = {2025},
    note = {R package version 2.3.6},
    url = {https://CRAN.R-project.org/package=fdasrvf},
  }

Readme and manuals

A R package for functional data analysis using the square root velocity framework which performs pair-wise and group-wise alignment as well as modeling using functional component analysis

Installation

v2.3.5 is on CRAN and can be installed as

install.packages("fdasrvf")`

For a more up to date, but may not be stable version from git repository.

  1. Download zip or tar.gz of package or clone repository
  2. Install into R (> 4.3.0)
library(devtools)
install_github("jdtuck/fdasrvf_R")

Example

The package contains simu dataset that is handy to experiment with the available functions for functions in $\mathbb{R}^1$.

We first visualize this dataset:

For that we first turn on class of functions present in the f for visualization:

library(fdasrvf)

f_plot(simu_data$time, simu_data$f)

We can see that each curve is a functionally closed 2D curve. And we distinguish different patterns of miss-alignment, like X values shrinking, small displacement, and many others.

We will now proceed with curve alignment for the curves of this class 1:

obj <- time_warping(simu_data$f, simu_data$time)
#> ℹ Using lambda = 0
#> ℹ Initializing...
#> ℹ Computing Karcher mean of 21 functions in SRSF space...
#> ℹ Entering iteration 1...

Let’s plot the result

plot(obj)

References

Tucker, J. D. 2014, Functional Component Analysis and Regression using Elastic Methods. Ph.D. Thesis, Florida State University.

Robinson, D. T. 2012, Function Data Analysis and Partial Shape Matching in the Square Root Velocity Framework. Ph.D. Thesis, Florida State University.

Huang, W. 2014, Optimization Algorithms on Riemannian Manifolds with Applications. Ph.D. Thesis, Florida State University.

Srivastava, A., Wu, W., Kurtek, S., Klassen, E. and Marron, J. S. (2011). Registration of Functional Data Using Fisher-Rao Metric. arXiv:1103.3817v2.

Tucker, J. D., Wu, W. and Srivastava, A. (2013). Generative models for functional data using phase and amplitude separation. Computational Statistics and Data Analysis 61, 50-66.

J. D. Tucker, W. Wu, and A. Srivastava, “Phase-Amplitude Separation of Proteomics Data Using Extended Fisher-Rao Metric,” Electronic Journal of Statistics, Vol 8, no. 2. pp 1724-1733, 2014.

J. D. Tucker, W. Wu, and A. Srivastava, “Analysis of signals under compositional noise With applications to SONAR data,” IEEE Journal of Oceanic Engineering, Vol 29, no. 2. pp 318-330, Apr 2014.

Srivastava, A., Klassen, E., Joshi, S., Jermyn, I., (2011). Shape analysis of elastic curves in euclidean spaces. Pattern Analysis and Machine Intelligence, IEEE Transactions on 33 (7), 1415-1428.

S. Kurtek, A. Srivastava, and W. Wu. Signal estimation under random time-warpings and nonlinear signal alignment. In Proceedings of Neural Information Processing Systems (NIPS), 2011.

Kurtek, S., Srivastava, A., Klassen, E., and Ding, Z. (2012), “Statistical Modeling of Curves Using Shapes and Related Features,” Journal of the American Statistical Association, 107, 1152–1165.

Wen Huang, Kyle A. Gallivan, Anuj Srivastava, Pierre-Antoine Absil. “Riemannian Optimization for Elastic Shape Analysis”, Short version, The 21st International Symposium on Mathematical Theory of Networks and Systems (MTNS 2014).

Cheng, W., Dryden, I. L., and Huang, X. (2016). Bayesian registration of functions and curves. Bayesian Analysis, 11(2), 447-475.

W. Xie, S. Kurtek, K. Bharath, and Y. Sun, A geometric approach to visualization of variability in functional data, Journal of American Statistical Association 112 (2017), pp. 979-993.

Lu, Y., R. Herbei, and S. Kurtek, 2017: Bayesian registration of functions with a Gaussian process prior. Journal of Computational and Graphical Statistics, 26, no. 4, 894–904.

Lee, S. and S. Jung, 2017: Combined analysis of amplitude and phase variations in functional data. arXiv:1603.01775, 1–21.

J. D. Tucker, J. R. Lewis, and A. Srivastava, “Elastic Functional Principal Component Regression,” Statistical Analysis and Data Mining, vol. 12, no. 2, pp. 101-115, 2019.

J. D. Tucker, J. R. Lewis, C. King, and S. Kurtek, “A Geometric Approach for Computing Tolerance Bounds for Elastic Functional Data,” Journal of Applied Statistics, 10.1080/02664763.2019.1645818, 2019.

T. Harris, J. D. Tucker, B. Li, and L. Shand, “Elastic depths for detecting shape anomalies in functional data,” Technometrics, 10.1080/00401706.2020.1811156, 2020.

Q. Xie, S. Kurtek, E. Klassen, G. E. Christensen and A. Srivastava. Metric-based pairwise and multiple image registration. IEEE European Conference on Computer Vision (ECCV), September, 2014

X. Zhang, S. Kurtek, O. Chkrebtii, and J. D. Tucker, “Elastic kkk-means clustering of functional data for posterior exploration, with an application to inference on acute respiratory infection dynamics”, arXiv:2011.12397 [stat.ME], 2020 arxiv

J. D. Tucker and D. Yarger, “Elastic Functional Changepoint Detection of Climate Impacts from Localized Sources”, Envirometrics, 10.1002/env.2826, 2023.

Help Manual

Help pageTopics
Group-wise function alignment and PCA Extractionsalign_fPCA
MPEG7 Curve Datasetbeta
Tolerance Bound Calculation using Bootstrap SamplingbootTB
Functional Boxplotboxplot.ampbox boxplot.curvebox boxplot.fdawarp boxplot.phbox
Elastic Shape Distancecalc_shape_dist
Curve Boxplotcurve_boxplot
Calculates elastic depth for a set of curvescurve_depth
Distance Matrix Computationcurve_dist
Form geodesic between two curvescurve_geodesic
Curve Karcher Covariancecurve_karcher_cov
Karcher Mean of Curvescurve_karcher_mean
Pairwise align two curvescurve_pair_align
Curve PCAcurve_principal_directions
Align Curvescurve_srvf_align
Curve to SRVF Spacecurve_to_q
Converts a curve to its SRVF representationcurve2srvf
Converts a curve from matrix to functional data objectdiscrete2curve
Converts a warping function from vector to functional data objectdiscrete2warping
Elastic Amplitude Changepoint Detectionelastic_amp_change_ff
Elastic Changepoint Detectionelastic_change_fpca
Elastic Phase Changepoint Detectionelastic_ph_change_ff
Calculates elastic depthelastic.depth
Calculates two elastic distanceelastic.distance
Elastic Logistic Regressionelastic.logistic
Elastic logistic Principal Component Regressionelastic.lpcr.regression
Elastic Multinomial Logistic Regressionelastic.mlogistic
Elastic Multinomial logistic Principal Component Regressionelastic.mlpcr.regression
Elastic Linear Principal Component Regressionelastic.pcr.regression
Elastic Prediction from Regression Modelselastic.prediction
Elastic Linear Regressionelastic.regression
Plot functional dataf_plot
Transformation to SRVF Spacef_to_srvf
Elastic Functional Data Analysisfdasrvf-package fdasrvf
Bayesian Group Warpingfunction_group_warp_bayes
Bayesian Karcher Mean Calculationfunction_mean_bayes
map warping function to tangent space at identitygam_to_h
map warping function to tangent space at identitygam_to_v
Gaussian model of functional datagauss_model
Computes the centroid of a curveget_curve_centroid
Computes the distance matrix between a set of shapes.get_distance_matrix
Computes the geodesic distance between two SRVFs on the Hilbert sphereget_hilbert_sphere_distance
Computes the identity warping functionget_identity_warping
Computes the L^2 distance between two SRVFsget_l2_distance
Computes the L^2 inner product between two SRVFsget_l2_inner_product
Computes the L^2 norm of an SRVFget_l2_norm
Computes the distance between two shapesget_shape_distance
Computes the distance between two warping functionsget_warping_distance
Gradient using finite differencesgradient
Berkeley Growth Velocity Datasetgrowth_vel
map shooting vector to warping function at identityh_to_gam
Horizontal Functional Principal Component AnalysishorizFPCA
Example Image Data setim
map square root of warping function to tangent spaceinv_exp_map
Invert Warping FunctioninvertGamma
Gaussian model of functional data using joint Modeljoint_gauss_model
Joint Vertical and Horizontal Functional Principal Component AnalysisjointFPCA
Joint Vertical and Horizontal Functional Principal Component AnalysisjointFPCAh
K-Means Clustering and Alignmentkmeans_align
Long Run Covariance Matrix Estimation for Multivariate Time SeriesLongRunCovMatrix
Group-wise function alignment to specified meanmultiple_align_functions
Karcher Mean of Multivariate Functional Datamultivariate_karcher_mean
Align two functionsoptimum.reparam
Outlier Detectionoutlier.detection
Align two functionspair_align_functions
Align two functionspair_align_functions_bayes
Align two functions using geometric properties of warping functionspair_align_functions_expomap
Pairwise align two images This function aligns to images using the q-map frameworkpair_align_image
Tolerance Bound Calculation using Elastic Functional PCApcaTB
Plot Curveplot_curve
Elastic Prediction for functional PCApredict.hfpca
Elastic Prediction for functional PCApredict.jfpca
Elastic Prediction for functional PCApredict.jfpcah
Elastic Prediction for functional logistic PCR Modelpredict.lpcr
Elastic Prediction for functional multinomial logistic PCR Modelpredict.mlpcr
Elastic Prediction for functional PCR Modelpredict.pcr
Elastic Prediction for functional PCApredict.vfpca
Convert to curve spaceq_to_curve
Align two curvesreparam_curve
Find optimum reparameterization between two imagesreparam_image
Resample Curveresamplecurve
Random Warpingrgam
Sample shapes from modelsample_shapes
Shape Confidence Interval Calculation using Bootstrap Samplingshape_CI
Simulated two Gaussian Datasetsimu_data
Aligned Simulated two Gaussian Datasetsimu_warp
Aligned Simulated two Gaussian Dataset using Mediansimu_warp_median
Smooth Functionssmooth.data
SRVF transform of warping functionsSqrtMean
SRVF transform of warping functionsSqrtMeanInverse
SRVF transform of warping functionsSqrtMedian
Transformation from SRSF Spacesrvf_to_f
Converts from SRVF to curve representationsrvf2curve
Alignment of univariate functional datatime_warping
Projects an SRVF onto the Hilbert sphereto_hilbert_sphere
Distributed Gaussian Peak Datasettoy_data
Aligned Distributed Gaussian Peak Datasettoy_warp
map shooting vector to warping function at identityv_to_gam
Vertical Functional Principal Component AnalysisvertFPCA
Applies a warping function to a given curvewarp_curve
Warp Functionwarp_f_gamma
Warp SRSFwarp_q_gamma
Applies a warping function to a given SRVFwarp_srvf