Package: fHMM 1.4.1
fHMM: Fitting Hidden Markov Models to Financial Data
Fitting (hierarchical) hidden Markov models to financial data via maximum likelihood estimation. See Oelschläger, L. and Adam, T. "Detecting Bearish and Bullish Markets in Financial Time Series Using Hierarchical Hidden Markov Models" (2021, Statistical Modelling) <doi:10.1177/1471082X211034048> for a reference on the method. A user guide is provided by the accompanying software paper "fHMM: Hidden Markov Models for Financial Time Series in R", Oelschläger, L., Adam, T., and Michels, R. (2024, Journal of Statistical Software) <doi:10.18637/jss.v109.i09>.
Authors:
fHMM_1.4.1.tar.gz
fHMM_1.4.1.tar.gz(r-4.5-noble)fHMM_1.4.1.tar.gz(r-4.4-noble)
fHMM_1.4.1.tgz(r-4.4-emscripten)fHMM_1.4.1.tgz(r-4.3-emscripten)
fHMM.pdf |fHMM.html✨
fHMM/json (API)
NEWS
# Install 'fHMM' in R: |
install.packages('fHMM', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/loelschlaeger/fhmm/issues
- dax - Deutscher Aktienindex (DAX) index data
- dax_model_2n - DAX 2-state HMM with normal distributions
- dax_model_3t - DAX 3-state HMM with t-distributions
- dax_vw_model - DAX/VW hierarchical HMM with t-distributions
- sim_model_2gamma - Simulated 2-state HMM with gamma distributions
- spx - Standard & Poor’s 500 (S&P 500) index data
- unemp - Unemployment rate data USA
- unemp_spx_model_3_2 - Unemployment rate and S&P 500 hierarchical HMM
- vw - Volkswagen AG (VW) stock data
Last updated 2 months agofrom:6f628087a1. Checks:OK: 2. Indexed: no.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 16 2024 |
R-4.5-linux-x86_64 | OK | Nov 16 2024 |
Exports:compare_modelscompute_residualsdecode_statesdownload_datafHMM_eventsfHMM_parametersfit_modelll_hmmnparpar2parConpar2parUnconparCon2parparCon2parUnconparUncon2parparUncon2parConprepare_datareorder_statesset_controlssimulate_hmmviterbi
Dependencies:askpassassertthatbackportsBBbenchmarkmebenchmarkmeDatabriocallrcheckmateclicliprcodetoolscolorspacecpp11crayoncredentialscurldescdiffobjdigestdoParalleldplyrevaluatefansifarverforeachfsgenericsGenOrdgertggfunggimageggplot2ggplotifyghgitcredsglueGPArotationgridGraphicsgtablehexbinhexStickerhmshttrhttr2iniisobanditeratorsjsonlitelabelinglatex2explatticelifecyclelubridatemagickmagrittrMASSMatrixmgcvmimemnormtmunsellmvtnormnleqslvnlmeoeliopensslpadrpillarpkgbuildpkgconfigpkgloadpracmapraiseprettyunitsprocessxprogresspspsychpurrrquadprogR6rappdirsRColorBrewerRcppRcppArmadillorlangrprojrootrstudioapiscalesshowtextshowtextdbSimMultiCorrDatastringistringrsyssysfontstestthattibbletidyselecttimechangetriangleusethisutf8vctrsVGAMviridisLitewaldowhiskerwithryamlyulab.utilszip
Controls
Rendered fromv02_controls.Rmd
usingknitr::rmarkdown
on Nov 16 2024.Last update: 2024-09-17
Started: 2022-03-14
Data management
Rendered fromv03_data_management.Rmd
usingknitr::rmarkdown
on Nov 16 2024.Last update: 2024-09-17
Started: 2022-03-14
Introduction
Rendered fromfHMM.Rmd
usingknitr::rmarkdown
on Nov 16 2024.Last update: 2024-09-17
Started: 2022-03-14
Model checking
Rendered fromv06_model_checking.Rmd
usingknitr::rmarkdown
on Nov 16 2024.Last update: 2024-09-17
Started: 2022-03-14
Model definition
Rendered fromv01_model_definition.Rmd
usingknitr::rmarkdown
on Nov 16 2024.Last update: 2024-09-17
Started: 2022-03-14
Model estimation
Rendered fromv04_model_estimation.Rmd
usingknitr::rmarkdown
on Nov 16 2024.Last update: 2024-09-17
Started: 2022-03-14
Model selection
Rendered fromv07_model_selection.Rmd
usingknitr::rmarkdown
on Nov 16 2024.Last update: 2024-09-17
Started: 2022-03-14
State decoding and prediction
Rendered fromv05_state_decoding_and_prediction.Rmd
usingknitr::rmarkdown
on Nov 16 2024.Last update: 2024-09-17
Started: 2022-03-14