Package: erboost 1.5

Yi Yang

erboost: Nonparametric Multiple Expectile Regression via ER-Boost

Expectile regression is a nice tool for estimating the conditional expectiles of a response variable given a set of covariates. This package implements a regression tree based gradient boosting estimator for nonparametric multiple expectile regression, proposed by Yang, Y., Qian, W. and Zou, H. (2018) <doi:10.1080/00949655.2013.876024>. The code is based on the 'gbm' package originally developed by Greg Ridgeway.

Authors:Yi Yang [aut, cre], Hui Zou [aut], Greg Ridgeway [ctb, cph]

erboost_1.5.tar.gz
erboost_1.5.tar.gz(r-4.5-noble)erboost_1.5.tar.gz(r-4.4-noble)
erboost_1.5.tgz(r-4.4-emscripten)erboost_1.5.tgz(r-4.3-emscripten)
erboost.pdf |erboost.html
erboost/json (API)

# Install 'erboost' in R:
install.packages('erboost', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))
Uses libs:
  • c++– GNU Standard C++ Library v3

On CRAN:

Conda:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

cpp

1.00 score 9 downloads 10 exports 1 dependencies

Last updated 8 hours agofrom:cc67e5dc32. Checks:3 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 25 2025
R-4.5-linux-x86_64OKMar 25 2025
R-4.4-linux-x86_64OKMar 25 2025

Exports:erboosterboost.fiterboost.losserboost.moreerboost.perfpermutation.test.erboostplot.erboostpredict.erboostrelative.influencesummary.erboost

Dependencies:lattice