Package: echos 1.0.1

echos: Echo State Networks for Time Series Modeling and Forecasting
Provides a lightweight implementation of functions and methods for fast and fully automatic time series modeling and forecasting using Echo State Networks (ESNs).
Authors:
echos_1.0.1.tar.gz
echos_1.0.1.tar.gz(r-4.5-noble)echos_1.0.1.tar.gz(r-4.4-noble)
echos_1.0.1.tgz(r-4.4-emscripten)echos_1.0.1.tgz(r-4.3-emscripten)
echos.pdf |echos.html✨
echos/json (API)
NEWS
# Install 'echos' in R: |
install.packages('echos', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/ahaeusser/echos/issues
Pkgdown site:https://ahaeusser.github.io
- m4_data - M4 dataset
Last updated 9 days agofrom:bb71365a4d. Checks:2 OK. Indexed: no.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Feb 11 2025 |
R-4.5-linux-x86_64 | OK | Feb 11 2025 |
Exports:ESNforecast_esnis.esnis.forecast_esnreservoirrun_reservoirtrain_esn
Dependencies:anytimeBHclicolorspacecpp11curldigestdistributionaldplyrellipsisfabletoolsfansifarverforecastfracdiffgenericsggdistggplot2gluegtableisobandjsonlitelabelinglatticelifecyclelmtestlubridatemagrittrMASSMatrixmgcvmunsellnlmennetnumDerivpillarpkgconfigprogressrpurrrquadprogquantmodR6RColorBrewerRcppRcppArmadillorlangscalesstringistringrtibbletidyrtidyselecttimechangetimeDatetseriestsibbleTTRurcautf8vctrsviridisLitewithrxtszoo
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Automatic train an Echo State Network | ESN |
Extract fitted values from a trained ESN | fitted.ESN |
Forecast a trained Echo State Network | forecast_esn |
Forecast a trained ESN | forecast.ESN |
Summary of trained models during random search | glance.ESN |
Checks if object is of class "esn" | is.esn |
Checks if object is of class "forecast_esn" | is.forecast_esn |
M4 dataset | m4_data |
Provide a succinct summary of a trained ESN | model_sum.ESN |
Plot point forecasts and actuals of a trained ESN model. | plot.forecast_esn |
Print specification of the trained ESN model | print.esn |
Provide a detailed summary of the trained ESN model | report.ESN |
Return the reservoir from a trained ESN as tibble | reservoir |
Extract residuals from a trained ESN | residuals.ESN |
Run reservoir | run_reservoir |
Provide a detailed summary of the trained ESN model | summary.esn |
Estimated coefficients | tidy.ESN |
Train an Echo State Network | train_esn |