Package: dsdp 0.1.1
dsdp: Density Estimation with Semidefinite Programming
The models of probability density functions are Gaussian or exponential distributions with polynomial correction terms. Using a maximum likelihood method, 'dsdp' computes parameters of Gaussian or exponential distributions together with degrees of polynomials by a grid search, and coefficient of polynomials by a variant of semidefinite programming. It adopts Akaike Information Criterion for model selection. See a vignette for a tutorial and more on our 'Github' repository <https://github.com/tsuchiya-lab/dsdp/>.
Authors:
dsdp_0.1.1.tar.gz
dsdp_0.1.1.tar.gz(r-4.5-noble)dsdp_0.1.1.tar.gz(r-4.4-noble)
dsdp_0.1.1.tgz(r-4.4-emscripten)dsdp_0.1.1.tgz(r-4.3-emscripten)
dsdp.pdf |dsdp.html✨
dsdp/json (API)
NEWS
# Install 'dsdp' in R: |
install.packages('dsdp', repos = 'https://cloud.r-project.org') |
Bug tracker:https://github.com/tsuchiya-lab/dsdp/issues0 issues
Pkgdown site:https://tsuchiya-lab.github.io
- mix2gauss - Datasets of Mixture of 2 Gaussian Distributions
- mix2gaussHist - Dataset of Mixture of 2 Gaussian Distributions: Histogram version
- mix3gauss - Datasets of Mixture of 3 Gaussian Distributions
- mixExpGammaHist - Dataset of Mixture of Exponential Distribution and Gamma Distribution: Histogram Version
- mixexpgamma - Dataset of Mixture of Exponential Distribution and Gamma Distribution
Last updated 2 years agofrom:53f709d862. Checks:1 OK, 2 WARNING. Indexed: no.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Mar 24 2025 |
R-4.5-linux-x86_64 | WARNING | Mar 24 2025 |
R-4.4-linux-x86_64 | WARNING | Mar 24 2025 |
Exports:cdf_expmodelcdf_gaussmodeldatabinningdatastatsestimateeval_polyexp_estexpmodelfuncgauss_estgaussmodelhistmeanigammaigammacmix2gauss_funmix2gauss_genmix3gauss_funmix3gauss_genmixexpgamma_funmixexpgamma_genpdf_expmodelpdf_gaussmodelpolyaxbprintf
Dependencies:clicolorspacefansifarverggplot2gluegtableisobandlabelinglatticelifecyclemagrittrMASSMatrixmgcvmunsellnlmepillarpkgconfigR6RColorBrewerrlangscalestibbleutf8vctrsviridisLitewithr
Readme and manuals
dsdp
The goal of dsdp
is to estimate probability density functions from a
data set using a maximum likelihood method. The models of density
functions in use are familiar Gaussian or exponential distributions with
polynomial correction terms. To find an optimal model, we adopt a grid
search for parameters of base functions and degrees of polynomials,
together with semidefinite programming for coefficients of polynomials,
and then model selection is done by Akaike Information Criterion.
Installation
## Install from CRAN
install.packages(dsdp)
You can install the development version of dsdp
from this repository:
## Install from github
devtools::install_github("tsuchiya-lab/dsdp")
To install from source codes, the user needs an appropriate compiler
toolchain, for example, rtools in Windows, to build dsdp
, along with
devtools
package.
Usage
Please refer to the tutorial and the reference in tsuchiya-lab.github.io/dsdp/.
Pdf version of articles are also available: A Tutorial for dsdp, Problem Formulations for dsdp.
Acknowledgements
This research was supported in part with Grant-in-Aid for Scientific Research(B) JP18H03206, JP21H03398 and Grant-in-Aid for Exploratory Research JP20K21792 from the Japan Society for the Promotion of Sciences.