Package: depower 2025.1.20
depower: Power Analysis for Differential Expression Studies
Provides a convenient framework to simulate, test, power, and visualize data for differential expression studies with lognormal or negative binomial outcomes. Supported designs are two-sample comparisons of independent or dependent outcomes. Power may be summarized in the context of controlling the per-family error rate or family-wise error rate. Negative binomial methods are described in Yu, Fernandez, and Brock (2017) <doi:10.1186/s12859-017-1648-2> and Yu, Fernandez, and Brock (2020) <doi:10.1186/s12859-020-3541-7>.
Authors:
depower_2025.1.20.tar.gz
depower_2025.1.20.tar.gz(r-4.5-noble)depower_2025.1.20.tar.gz(r-4.4-noble)
depower_2025.1.20.tgz(r-4.4-emscripten)depower_2025.1.20.tgz(r-4.3-emscripten)
depower.pdf |depower.html✨
depower/json (API)
NEWS
# Install 'depower' in R: |
install.packages('depower', repos = 'https://cloud.r-project.org') |
Bug tracker:https://bitbucket.org/bklamer/depower
Last updated 2 months agofrom:c8ce0ef6c7. Checks:2 OK, 1 WARNING. Indexed: no.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Mar 24 2025 |
R-4.5-linux | WARNING | Mar 24 2025 |
R-4.4-linux | OK | Mar 24 2025 |
Exports:glm_nbglmm_bnbglmm_poissonlrt_bnblrt_nbmle_bnb_altmle_bnb_nullmle_nb_altmle_nb_nullnll_bnb_altnll_bnb_nullnll_nb_altnll_nb_nullpowersim_bnbsim_log_lognormalsim_nbt_test_pairedt_test_welchwald_test_bnbwald_test_nb
Dependencies:BHbootcallrclicolorspacecrayondplyrfansifarvergenericsggplot2glmmTMBgluegtableisobandlabelinglatticelifecyclelme4magrittrMASSMatrixmgcvminqamultidplyrmunsellmvnfastnlmenloptrnumDerivpillarpkgconfigprocessxpsqsR6RApiSerializerbibutilsRColorBrewerRcppRcppArmadilloRcppEigenRcppParallelRdpackreformulasrlangscalesstringfishtibbletidyselectTMButf8vctrsviridisLitewithr
Citation
To cite depower in publications, please use:
Klamer, B. G., & Yu, L. (2025). depower: Power Analysis for Differential Expression Studies. R package version 2025.1.20. https://cran.r-project.org/package=depower
Corresponding BibTeX entry:
@Manual{depower, author = {Brett G. Klamer and Lianbo Yu}, title = {depower: Power Analysis for Differential Expression Studies}, year = {2025}, note = {2025.1.20}, url = {https://cran.r-project.org/package=depower}, }
Readme and manuals
depower
Overview
depower provides a convenient framework to simulate, test, power, and visualize data for differential expression studies with lognormal or negative binomial outcomes. Supported designs are two-sample comparisons of both independent and dependent outcomes. Power may be summarized in the context of controlling the per-family error rate or family-wise error rate.
Installation
# Install from CRAN
install.packages("depower")
# Or the development version from bitbucket
remotes::install_bitbucket("bklamer/depower")
Usage
library(depower)
Estimate power to detect the ratio of means for independent two-sample negative binomial data.
set.seed(1234)
power_nb <- sim_nb(
n1 = 30,
n2 = 30,
mean1 = 15,
ratio = c(2, 2.5),
dispersion1 = 1,
dispersion2 = 2,
nsims = 200
) |>
power()
power_nb
#> # A tibble: 2 × 12
#> n1 n2 mean1 mean2 ratio dispersion1 dispersion2 distribution nsims test alpha
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <chr> <dbl> <chr> <dbl>
#> 1 30 30 15 30 2 1 2 Independent … 200 NB W… 0.05
#> 2 30 30 15 37.5 2.5 1 2 Independent … 200 NB W… 0.05
#> # ℹ 1 more variable: power <dbl>
plot(power_nb)
Estimate power to detect the ratio of means for bivariate negative binomial data.
set.seed(1234)
power_bnb <- sim_bnb(
n = 30,
mean1 = 15,
ratio = c(1.2, 1.3),
dispersion = 1,
nsims = 300
) |>
power()
power_bnb
#> # A tibble: 2 × 11
#> n1 n2 mean1 mean2 ratio dispersion1 distribution nsims test alpha power
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <chr> <dbl> <chr> <dbl> <dbl>
#> 1 30 30 15 18 1.2 1 Dependent two-samp… 300 BNB … 0.05 0.833
#> 2 30 30 15 19.5 1.3 1 Dependent two-samp… 300 BNB … 0.05 0.987
plot(power_bnb)
Estimate power to detect the geometric ratio of means for independent two-sample lognormal data.
set.seed(1234)
power_ind_lognormal <- sim_log_lognormal(
n1 = 30,
n2 = 30,
ratio = c(1.3, 1.5),
cv1 = 0.4,
cv2 = 0.4,
nsims = 500
) |>
power()
power_ind_lognormal
#> # A tibble: 2 × 11
#> n1 n2 ratio cv1 cv2 cor distribution nsims test alpha power
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <chr> <dbl> <chr> <dbl> <dbl>
#> 1 30 30 1.3 0.4 0.4 0 Independent two-sample l… 500 Welc… 0.05 0.718
#> 2 30 30 1.5 0.4 0.4 0 Independent two-sample l… 500 Welc… 0.05 0.978
plot(power_ind_lognormal)
Estimate power to detect the geometric mean ratio for dependent two-sample lognormal data.
set.seed(1234)
power_dep_lognormal <- sim_log_lognormal(
n1 = 30,
n2 = 30,
ratio = c(1.3, 1.5),
cv1 = 0.4,
cv2 = 0.4,
cor = 0.3,
nsims = 500
) |>
power()
power_dep_lognormal
#> # A tibble: 2 × 11
#> n1 n2 ratio cv1 cv2 cor distribution nsims test alpha power
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <chr> <dbl> <chr> <dbl> <dbl>
#> 1 30 30 1.3 0.4 0.4 0.3 Dependent two-sample log… 500 Pair… 0.05 0.848
#> 2 30 30 1.5 0.4 0.4 0.3 Dependent two-sample log… 500 Pair… 0.05 0.998
plot(power_dep_lognormal)
Estimate power to detect the geometric mean for one-sample lognormal data.
set.seed(1234)
power_one_lognormal <- sim_log_lognormal(
n1 = 30,
ratio = c(1.3, 1.5),
cv1 = 0.4,
nsims = 500
) |>
power()
power_one_lognormal
#> # A tibble: 2 × 8
#> n1 ratio cv1 distribution nsims test alpha power
#> <dbl> <dbl> <dbl> <chr> <dbl> <chr> <dbl> <dbl>
#> 1 30 1.3 0.4 One-sample log(lognormal) 500 One-sample t-Test 0.05 0.96
#> 2 30 1.5 0.4 One-sample log(lognormal) 500 One-sample t-Test 0.05 1
plot(power_one_lognormal)
Help Manual
Help page | Topics |
---|---|
GLM for NB ratio of means | glm_nb |
GLMM for BNB ratio of means | glmm_bnb |
GLMM for Poisson ratio of means | glmm_poisson |
Likelihood ratio test for BNB ratio of means | lrt_bnb |
Likelihood ratio test for NB ratio of means | lrt_nb |
MLE for BNB | mle_bnb mle_bnb_alt mle_bnb_null |
MLE for NB | mle_nb mle_nb_alt mle_nb_null |
Negative log-likelihood for BNB | nll_bnb nll_bnb_alt nll_bnb_null |
Negative log-likelihood for NB | nll_nb nll_nb_alt nll_nb_null |
Plot power objects | plot.depower |
Simulated power | power |
Simulate data from a BNB distribution | sim_bnb |
Simulate data from a normal distribution | sim_log_lognormal |
Simulate data from a NB distribution | sim_nb |
Paired and one-sample t-Tests | t_test_paired |
Welch's t-Test | t_test_welch |
Wald test for BNB ratio of means | wald_test_bnb |
Wald test for NB ratio of means | wald_test_nb |