Package: daltoolbox 1.1.727

Eduardo Ogasawara

daltoolbox: Leveraging Experiment Lines to Data Analytics

The natural increase in the complexity of current research experiments and data demands better tools to enhance productivity in Data Analytics. The package is a framework designed to address the modern challenges in data analytics workflows. The package is inspired by Experiment Line concepts. It aims to provide seamless support for users in developing their data mining workflows by offering a uniform data model and method API. It enables the integration of various data mining activities, including data preprocessing, classification, regression, clustering, and time series prediction. It also offers options for hyper-parameter tuning and supports integration with existing libraries and languages. Overall, the package provides researchers with a comprehensive set of functionalities for data science, promoting ease of use, extensibility, and integration with various tools and libraries. Information on Experiment Line is based on Ogasawara et al. (2009) <doi:10.1007/978-3-642-02279-1_20>.

Authors:Eduardo Ogasawara [aut, ths, cre], Antonio Castro [aut, ctb], Heraldo Borges [aut, ths], Janio Lima [aut, ths], Lucas Tavares [aut, ths], Diego Carvalho [aut, ths], Eduardo Bezerra [aut, ths], Joel Santos [aut, ths], Rafaelli Coutinho [aut, ths], Federal Center for Technological Education of Rio de Janeiro [cph]

daltoolbox_1.1.727.tar.gz
daltoolbox_1.1.727.tar.gz(r-4.5-noble)daltoolbox_1.1.727.tar.gz(r-4.4-noble)
daltoolbox_1.1.727.tgz(r-4.4-emscripten)daltoolbox_1.1.727.tgz(r-4.3-emscripten)
daltoolbox.pdf |daltoolbox.html
daltoolbox/json (API)

# Install 'daltoolbox' in R:
install.packages('daltoolbox', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/cefet-rj-dal/daltoolbox/issues

Datasets:

4.80 score 4 packages 264 scripts 665 downloads 113 exports 108 dependencies

Last updated 2 days agofrom:b89c55d3dd. Checks:OK: 2. Indexed: no.

TargetResultDate
Doc / VignettesOKNov 25 2024
R-4.5-linuxOKNov 25 2024

Exports:aae_encodeaae_encode_decodeactionadjust_class_labeladjust_data.frameadjust_factoradjust_matrixadjust_ts_dataautoenc_encodeautoenc_encode_decodecae_encodecae_encode_decodecae2d_encode_decodecae2den_encodecae2den_encode_decodecateg_mappingcla_dtreecla_knncla_majoritycla_mlpcla_nbcla_rfcla_svmcla_tuneclassificationclu_tuneclustercluster_dbscancluster_kmeanscluster_pamclustererdal_basedal_learnerdal_transformdal_tunedata_sampledns_encode_decodedo_fitdo_predictdt_pcaevaluatefitfit_curvature_maxfit_curvature_mininverse_transformk_foldlae_encodelae_encode_decodeminmaxMSE.tsoutliersplot_barplot_boxplotplot_boxplot_classplot_densityplot_density_classplot_groupedbarplot_histplot_lollipopplot_pieplotplot_pointsplot_radarplot_scatterplot_seriesplot_stackedbarplot_tsplot_ts_predpredictorR2.tsreg_dtreereg_knnreg_mlpreg_rfreg_svmreg_tuneregressionsae_encodesae_encode_decodesample_randomsample_stratifiedselect_hyperset_paramssMAPE.tssmoothingsmoothing_clustersmoothing_freqsmoothing_intertrain_testtrain_test_from_foldstransformts_arimats_conv1dts_datats_elmts_headts_knnts_lstmts_mlpts_norm_ants_norm_diffts_norm_eants_norm_gminmaxts_norm_swminmaxts_projectionts_regts_regswts_rfts_samplets_svmts_tunevarae_encodevarae_encode_decodezscore

Dependencies:bitopscaretcaToolsclasscliclockclustercodetoolscolorspacecpp11curldata.tabledbscandiagramdigestdplyre1071elmNNRcppfansifarverFNNforeachforecastfracdifffuturefuture.applygenericsggplot2globalsgluegowergplotsgtablegtoolshardhathereipredisobanditeratorsjsonliteKernelKnnKernSmoothlabelinglatticelavalifecyclelistenvlmtestlubridatemagrittrMASSMatrixmgcvMLmetricsModelMetricsmunsellnlmennetnumDerivparallellypillarpkgconfigplyrpngpROCprodlimprogressrproxypurrrquadprogquantmodR6randomForestrappdirsRColorBrewerRcppRcppArmadilloRcppTOMLrecipesreshapereshape2reticulaterlangROCRrpartrprojrootscalesshapeSQUAREMstringistringrsurvivaltibbletidyrtidyselecttimechangetimeDatetreetseriesTTRtzdburcautf8vctrsviridisLitewithrxtszoo

Readme and manuals

Help Manual

Help pageTopics
Subset Extraction for Time Series Data[.ts_data
Adversarial Autoencoder - Encodeaae_encode
Adversarial Autoencoder - Encodeaae_encode_decode
Actionaction
Action implementation for transformaction.dal_transform
Adjust categorical mappingadjust_class_label
Adjust to data frameadjust_data.frame
Adjust factorsadjust_factor
Adjust to matrixadjust_matrix
Adjust 'ts_data'adjust_ts_data
Autoencoder - Encodeautoenc_encode
Autoencoder - Encode-decodeautoenc_encode_decode
Boston Housing Data (Regression)Boston
Convolutional Autoencoder - Encodecae_encode
Convolutional Autoencoder - Encodecae_encode_decode
Convolutional 2d Autoencoder - Encodecae2d_encode_decode
Convolutional 2d Denoising Autoencoder - Encodecae2den_encode
Convolutional 2d Denoising Autoencoder - Encodecae2den_encode_decode
Categorical mappingcateg_mapping
Decision Tree for classificationcla_dtree
K Nearest Neighbor Classificationcla_knn
Majority Classificationcla_majority
MLP for classificationcla_mlp
Naive Bayes Classifiercla_nb
Random Forest for classificationcla_rf
SVM for classificationcla_svm
Classification Tunecla_tune
classificationclassification
Clustering Tuneclu_tune
Clustercluster
DBSCANcluster_dbscan
k-meanscluster_kmeans
PAMcluster_pam
Clustererclusterer
Class dal_basedal_base
DAL Learnerdal_learner
DAL Transformdal_transform
DAL Tunedal_tune
Data Sampledata_sample
Denoising Autoencoder - Encodedns_encode
Denoising Autoencoder - Encodedns_encode_decode
Fit Time Series Modeldo_fit
Predict Time Series Modeldo_predict
PCAdt_pca
Evaluateevaluate
Fitfit
maximum curvature analysisfit_curvature_max
minimum curvature analysisfit_curvature_min
tune hyperparameters of ml modelfit.cla_tune
fit dbscan modelfit.cluster_dbscan
Inverse Transforminverse_transform
K-fold samplingk_fold
LSTM Autoencoder - Encodelae_encode
LSTM Autoencoder - Decodelae_encode_decode
Min-max normalizationminmax
MSEMSE.ts
Outliersoutliers
Plot bar graphplot_bar
Plot boxplotplot_boxplot
Boxplot per classplot_boxplot_class
Plot densityplot_density
Plot density per classplot_density_class
Plot grouped barplot_groupedbar
Plot histogramplot_hist
Plot lollipopplot_lollipop
Plot pieplot_pieplot
Plot pointsplot_points
Plot radarplot_radar
Scatter graphplot_scatter
Plot seriesplot_series
Plot stacked barplot_stackedbar
Plot time series chartplot_ts
Plot a time series chart with predictionsplot_ts_pred
DAL Predictpredictor
R2R2.ts
Decision Tree for regressionreg_dtree
knn regressionreg_knn
MLP for regressionreg_mlp
Random Forest for regressionreg_rf
SVM for regressionreg_svm
Regression Tunereg_tune
Regressionregression
Stacked Autoencoder - Encodesae_encode
Stacked Autoencoder - Encodesae_encode_decode
Sample Randomsample_random
Stratified Random Samplingsample_stratified
Selection hyper parametersselect_hyper
selection of hyperparametersselect_hyper.cla_tune
Select Optimal Hyperparameters for Time Series Modelsselect_hyper.ts_tune
Assign parametersset_params
Default Assign parametersset_params.default
Time series example datasetsin_data
sMAPEsMAPE.ts
Smoothingsmoothing
Smoothing by clustersmoothing_cluster
Smoothing by Freqsmoothing_freq
Smoothing by intervalsmoothing_inter
Train-Test Partitiontrain_test
k-fold training and test partition objecttrain_test_from_folds
Transformtransform
ARIMAts_arima
Conv1Dts_conv1d
ts_datats_data
ELMts_elm
Extract the First Observations from a 'ts_data' Objectts_head
KNN time series predictionts_knn
LSTMts_lstm
MLPts_mlp
Time Series Adaptive Normalizationts_norm_an
Time Series Diffts_norm_diff
Time Series Adaptive Normalization (Exponential Moving Average - EMA)ts_norm_ean
Time Series Global Min-Maxts_norm_gminmax
Time Series Sliding Window Min-Maxts_norm_swminmax
Time Series Projectionts_projection
TSRegts_reg
TSRegSWts_regsw
Random Forestts_rf
Time Series Samplets_sample
SVMts_svm
Time Series Tunets_tune
Variational Autoencoder - Encodevarae_encode
Variational Autoencoder - Encodevarae_encode_decode
Z-score normalizationzscore