Package: coxphw 4.0.3

Daniela Dunkler

coxphw: Weighted Estimation in Cox Regression

Implements weighted estimation in Cox regression as proposed by Schemper, Wakounig and Heinze (Statistics in Medicine, 2009, <doi:10.1002/sim.3623>) and as described in Dunkler, Ploner, Schemper and Heinze (Journal of Statistical Software, 2018, <doi:10.18637/jss.v084.i02>). Weighted Cox regression provides unbiased average hazard ratio estimates also in case of non-proportional hazards. Approximated generalized concordance probability an effect size measure for clear-cut decisions can be obtained. The package provides options to estimate time-dependent effects conveniently by including interactions of covariates with arbitrary functions of time, with or without making use of the weighting option.

Authors:Daniela Dunkler [aut, cre], Georg Heinze [aut], Meinhard Ploner [aut]

coxphw_4.0.3.tar.gz
coxphw_4.0.3.tar.gz(r-4.5-noble)coxphw_4.0.3.tar.gz(r-4.4-noble)
coxphw_4.0.3.tgz(r-4.4-emscripten)coxphw_4.0.3.tgz(r-4.3-emscripten)
coxphw.pdf |coxphw.html
coxphw/json (API)
NEWS

# Install 'coxphw' in R:
install.packages('coxphw', repos = 'https://cloud.r-project.org')

Bug tracker:https://github.com/biometrician/coxphw/issues3 issues

Uses libs:
  • fortran– Runtime library for GNU Fortran applications
Datasets:

On CRAN:

Conda:

fortran

4.02 score 1 stars 1 packages 432 downloads 7 mentions 6 exports 3 dependencies

Last updated 1 years agofrom:db21b7512c. Checks:3 OK. Indexed: no.

TargetResultLatest binary
Doc / VignettesOKMar 23 2025
R-4.5-linux-x86_64OKMar 23 2025
R-4.4-linux-x86_64OKMar 23 2025

Exports:concordcoxphwcoxphw.controlfp.powerPTwald

Dependencies:latticeMatrixsurvival

R code for 'Weighted Cox Regression using the R package coxphw'

Rendered fromjss_2018_example_code.Rmdusingknitr::rmarkdownon Mar 23 2025.

Last update: 2020-06-22
Started: 2018-04-17

Citation

To cite coxphw in publications use:

Dunkler D, Ploner M, Schemper M, Heinze G (2018). “Weighted Cox Regression Using the R Package coxphw.” Journal of Statistical Software, 84(2), 1–26. doi:10.18637/jss.v084.i02.

Corresponding BibTeX entry:

  @Article{,
    title = {Weighted Cox Regression Using the {R} Package {coxphw}},
    author = {Daniela Dunkler and Meinhard Ploner and Michael Schemper
      and Georg Heinze},
    journal = {Journal of Statistical Software},
    year = {2018},
    volume = {84},
    number = {2},
    pages = {1--26},
    doi = {10.18637/jss.v084.i02},
  }

Readme and manuals

The R package coxphw implements weighted estimation in Cox regression as proposed by Schemper, Wakounig and Heinze (Statistics in Medicine, 2009, https://doi.org/10.1002/sim.3623) and as described in Dunkler, Ploner, Schemper and Heinze (Journal of Statistical Software, 2018, https://doi.org/10.18637/jss.v084.i02). The package provides options to estimate time-dependent effects conveniently by including interactions of covariates with arbitrary functions of time, with or without making use of the weighting option.

This package is licensed under GPL-3, and available on CRAN: https://cran.r-project.org/package=coxphw.

Help Manual

Help pageTopics
Weighted Estimation in Cox Regressioncoxphw-package
Biofeedback Treatment Databiofeedback
Extract Model Coefficients for Objects of Class 'coxphw'coef.coxphw
Compute Generalized Concordance Probabilities for Objects of Class 'coxphw' or 'coxph'concord
Confidence Intervals for Model Parametersconfint.coxphw
Weighted Estimation in Cox Regressioncoxphw
Ancillary arguments for controlling coxphw fitscoxphw.control
Provides Fractional Polynomials as Accessible Functionfp.power
Gastric Cancer Datagastric
Plot Weights of Weighted Estimation in Cox Regressionplot.coxphw
Plot the Relative or Log Relative Hazard Versus Values of a Continuous Covariable.plot.coxphw.predict
Predictions for a weighted Cox modelpredict.coxphw
Print Method for Objects of Class 'coxphw'print.coxphw
Print Method for Objects of Class 'predict.coxphw'print.coxphw.predict
Pretransformation functionPT
Summary Method for Objects of Class 'coxphw'summary.coxphw
Obtain the Variance-Covariance Matrix for a Fitted Model Object of Class 'coxphw'vcov.coxphw
Wald-Test for Model Coefficientswald