Package: conquer 1.3.3
conquer: Convolution-Type Smoothed Quantile Regression
Estimation and inference for conditional linear quantile regression models using a convolution smoothed approach. In the low-dimensional setting, efficient gradient-based methods are employed for fitting both a single model and a regression process over a quantile range. Normal-based and (multiplier) bootstrap confidence intervals for all slope coefficients are constructed. In high dimensions, the conquer method is complemented with flexible types of penalties (Lasso, elastic-net, group lasso, sparse group lasso, scad and mcp) to deal with complex low-dimensional structures.
Authors:
conquer_1.3.3.tar.gz
conquer_1.3.3.tar.gz(r-4.5-noble)conquer_1.3.3.tar.gz(r-4.4-noble)
conquer_1.3.3.tgz(r-4.4-emscripten)conquer_1.3.3.tgz(r-4.3-emscripten)
conquer.pdf |conquer.html✨
conquer/json (API)
# Install 'conquer' in R: |
install.packages('conquer', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/xiaooupan/conquer/issues
Last updated 2 years agofrom:b8bd8362c6. Checks:OK: 2. Indexed: no.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 11 2024 |
R-4.5-linux-x86_64 | OK | Nov 11 2024 |
Exports:conquerconquer.cv.regconquer.processconquer.reg
Dependencies:latticeMatrixmatrixStatsRcppRcppArmadillo
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Conquer: Convolution-Type Smoothed Quantile Regression | conquer-package |
Convolution-Type Smoothed Quantile Regression | conquer |
Cross-Validated Penalized Convolution-Type Smoothed Quantile Regression | conquer.cv.reg |
Convolution-Type Smoothed Quantile Regression Process | conquer.process |
Penalized Convolution-Type Smoothed Quantile Regression | conquer.reg |