Package: clickstream 1.3.3
clickstream: Analyzes Clickstreams Based on Markov Chains
A set of tools to read, analyze and write lists of click sequences on websites (i.e., clickstream). A click can be represented by a number, character or string. Clickstreams can be modeled as zero- (only computes occurrence probabilities), first- or higher-order Markov chains.
Authors:
clickstream_1.3.3.tar.gz
clickstream_1.3.3.tar.gz(r-4.5-noble)clickstream_1.3.3.tar.gz(r-4.4-noble)
clickstream_1.3.3.tgz(r-4.4-emscripten)clickstream_1.3.3.tgz(r-4.3-emscripten)
clickstream.pdf |clickstream.html✨
clickstream/json (API)
NEWS
# Install 'clickstream' in R: |
install.packages('clickstream', repos = 'https://cloud.r-project.org') |
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 2 years agofrom:f34112583e. Checks:2 OK, 1 NOTE. Indexed: no.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Mar 26 2025 |
R-4.5-linux | NOTE | Mar 26 2025 |
R-4.4-linux | OK | Mar 26 2025 |
Exports:absorbingStatesas.ClickClustas.clickstreamsas.moltenTransactionsas.transactionschiSquareTestclusterClickstreamsfitMarkovChainfitMarkovChainsfrequenciesgetConsensusClustersgetConsensusClustersParallelgetOptimalMarkovChainhmPlotinitializemcEvaluatemcEvaluateAllmcEvaluateAllClustersplotpredictrandomClicksrandomClickstreamsreadClickstreamsshowstatessummarytransientStateswriteClickstreams
Dependencies:arulescliClickClustcolorspacecpp11data.tablefansifarvergenericsggplot2gluegtableigraphisobandlabelinglatticelifecyclelinproglpSolvemagrittrMASSMatrixmgcvmunsellnlmepillarpkgconfigplyrR6RColorBrewerRcppreshape2rlangRsolnpscalesstringistringrtibbletruncnormutf8vctrsviridisLitewithr
Citation
To cite clickstream in publications use:
Michael Scholz (2016). R Package clickstream: Analyzing Clickstream Data with Markov Chains. Journal of Statistical Software, 74(4), 1-17.<doi:10.18637/jss.v074.i04>
Corresponding BibTeX entry:
@Article{, title = {{R} Package {clickstream}: Analyzing Clickstream Data with Markov Chains}, author = {Michael Scholz}, journal = {Journal of Statistical Software}, year = {2016}, volume = {74}, number = {4}, pages = {1--17}, doi = {10.18637/jss.v074.i04}, }