Package: bpgmm 1.0.9
bpgmm: Bayesian Model Selection Approach for Parsimonious Gaussian Mixture Models
Model-based clustering using Bayesian parsimonious Gaussian mixture models. MCMC (Markov chain Monte Carlo) are used for parameter estimation. The RJMCMC (Reversible-jump Markov chain Monte Carlo) is used for model selection. GREEN et al. (1995) <doi:10.1093/biomet/82.4.711>.
Authors:
bpgmm_1.0.9.tar.gz
bpgmm_1.0.9.tar.gz(r-4.5-noble)bpgmm_1.0.9.tar.gz(r-4.4-noble)
bpgmm_1.0.9.tgz(r-4.4-emscripten)bpgmm_1.0.9.tgz(r-4.3-emscripten)
bpgmm.pdf |bpgmm.html✨
bpgmm/json (API)
# Install 'bpgmm' in R: |
install.packages('bpgmm', repos = 'https://cloud.r-project.org') |
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 3 years agofrom:1727ec38fa. Checks:1 OK, 2 NOTE. Indexed: no.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Mar 04 2025 |
R-4.5-linux-x86_64 | NOTE | Mar 04 2025 |
R-4.4-linux-x86_64 | NOTE | Mar 04 2025 |
Exports:CalculateProposalLambdaCalculateProposalPsyEvaluateProposalLambdageneratePriorLambdageneratePriorPsigeneratePriorThetaYpgmmRJMCMCstayMCMCupdatesummerizePgmmRJMCMCtoEthetaYlist
Dependencies:briocallrclicodacodetoolscolorspacecombinatcorrplotcrayondescdiffobjdigestdoParallelellipseevaluatefabMixfansifarverfftwtoolsforeachfsggplot2gluegtablegtoolsisobanditeratorsjsonlitelabel.switchinglabelinglatticelifecyclelpSolvemagrittrMASSMatrixmclustmcmcsemgcvmunsellmvtnormnlmepgmmpillarpkgbuildpkgconfigpkgloadpraiseprocessxpsR6RColorBrewerRcppRcppArmadillorlangrprojrootscalestestthattibbleutf8vctrsviridisLitewaldowithr
Citation
To cite package ‘bpgmm’ in publications use:
Lu X, Li Y, Love T (2022). bpgmm: Bayesian Model Selection Approach for Parsimonious Gaussian Mixture Models. R package version 1.0.9, https://CRAN.R-project.org/package=bpgmm.
ATTENTION: This citation information has been auto-generated from the package DESCRIPTION file and may need manual editing, see ‘help("citation")’.
Corresponding BibTeX entry:
@Manual{, title = {bpgmm: Bayesian Model Selection Approach for Parsimonious Gaussian Mixture Models}, author = {Xiang Lu and Yaoxiang Li and Tanzy Love}, year = {2022}, note = {R package version 1.0.9}, url = {https://CRAN.R-project.org/package=bpgmm}, }