Package: blockmodels 1.1.5

Jean-Benoist Leger

blockmodels: Latent and Stochastic Block Model Estimation by a 'V-EM' Algorithm

Latent and Stochastic Block Model estimation by a Variational EM algorithm. Various probability distribution are provided (Bernoulli, Poisson...), with or without covariates.

Authors:Jean-Benoist Leger <jbleger@hds.utc.fr>, Pierre Barbillon <pierre.barbillon@agroparistech.fr>, Julien Chiquet <julien.chiquet@inrae.fr>

blockmodels_1.1.5.tar.gz
blockmodels_1.1.5.tar.gz(r-4.5-noble)blockmodels_1.1.5.tar.gz(r-4.4-noble)
blockmodels_1.1.5.tgz(r-4.4-emscripten)blockmodels_1.1.5.tgz(r-4.3-emscripten)
blockmodels.pdf |blockmodels.html
blockmodels/json (API)

# Install 'blockmodels' in R:
install.packages('blockmodels', repos = 'https://cloud.r-project.org')
Uses libs:
  • openblas– Optimized BLAS
  • c++– GNU Standard C++ Library v3

On CRAN:

Conda:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

openblascpp

2.73 score 2 stars 9 packages 621 downloads 11 exports 3 dependencies

Last updated 3 years agofrom:271b3a7f1b. Checks:3 OK. Indexed: no.

TargetResultLatest binary
Doc / VignettesOKMar 26 2025
R-4.5-linux-x86_64OKMar 26 2025
R-4.4-linux-x86_64OKMar 26 2025

Exports:BM_bernoulliBM_bernoulli_covariatesBM_bernoulli_covariates_fastBM_bernoulli_multiplexBM_gaussianBM_gaussian_covariatesBM_gaussian_multivariateBM_gaussian_multivariate_independentBM_gaussian_multivariate_independent_homoscedasticBM_poissonBM_poisson_covariates

Dependencies:digestRcppRcppArmadillo

Citation

To cite package ‘blockmodels’ in publications use:

Leger J, Barbillon P, Chiquet J (2021). blockmodels: Latent and Stochastic Block Model Estimation by a 'V-EM' Algorithm. R package version 1.1.5, https://CRAN.R-project.org/package=blockmodels.

ATTENTION: This citation information has been auto-generated from the package DESCRIPTION file and may need manual editing, see ‘help("citation")’.

Corresponding BibTeX entry:

  @Manual{,
    title = {blockmodels: Latent and Stochastic Block Model Estimation
      by a 'V-EM' Algorithm},
    author = {Jean-Benoist Leger and Pierre Barbillon and Julien
      Chiquet},
    year = {2021},
    note = {R package version 1.1.5},
    url = {https://CRAN.R-project.org/package=blockmodels},
  }

Readme and manuals

Help Manual

Help pageTopics
Perform estimation on blockmodels for bernoulli probability distributionBM_bernoulli \S4method{BM_bernoulli}{new}
Perform estimation on blockmodels for bernoulli probability distribution aith covariatesBM_bernoulli_covariates \S4method{BM_bernoulli_covariates}{new}
Perform estimation on blockmodels for bernoulli probability distribution aith covariatesBM_bernoulli_covariates_fast \S4method{BM_bernoulli_covariates_fast}{new}
Perform estimation on blockmodels for multiplex binary networksBM_bernoulli_multiplex \S4method{BM_bernoulli_multiplex}{new}
Perform estimation on blockmodels for gaussian probability distributionBM_gaussian \S4method{BM_gaussian}{new}
Perform estimation on blockmodels for gaussian probability distribution with covariatesBM_gaussian_covariates \S4method{BM_gaussian_covariates}{new}
Perform estimation on blockmodels for multivariate gaussian probability distributionBM_gaussian_multivariate \S4method{BM_gaussian_multivariate}{new}
Perform estimation on blockmodels for multivariate independent homoscedastic gaussian probability distributionBM_gaussian_multivariate_independent \S4method{BM_gaussian_multivariate_independent}{new}
Perform estimation on blockmodels for multivariate independent homoscedastic gaussian probability distributionBM_gaussian_multivariate_independent_homoscedastic \S4method{BM_gaussian_multivariate_independent_homoscedastic}{new}
Perform estimation on blockmodels for poisson probability distributionBM_poisson \S4method{BM_poisson}{new}
Perform estimation on blockmodels for poisson probability distribution aith covariatesBM_poisson_covariates \S4method{BM_poisson_covariates}{new}